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GPU Computing
 

● Utilization of GPU gives 
speedup on many algorithms
○ Parallel programming on GPU 

using CUDA / OpenCL 
environments
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Directive-Based GPU Programming
 
● Compiler generates GPU kernels from 

sequential code w/ pragmas
 

● Advantages of using directives:
○ Preserves serial implementation of code
○ Focus on highlighting parallelism
○ Eases interaction between scientists and 

programmers
 

● Frameworks include HMPP and OpenACC
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GPU Code Optimization
 
● Code transformations may improve 

performance
○ Loop unrolling, tiling, permutation, fusion/fission, 

which loop(s) parallelized

 
● Constant tweaking required to get best 

performance
○ Resulting code may be brittle
○ Optimized code on one architecture may give poor 

performance on alternate architecture
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Optimization Using HMPP 
Workbench

● Auto-tuning w/ HMPP Workbench to 
determine good transformations

 

● HMPP Workbench
○ Source-to-source compiler developed by CAPS 

Enterprise
○ Directive-based framework targeted to GPUs
○ Transforms sequential code to GPU code
○ Contains pragmas for code optimization
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HMPP Compiler
 

● Generates GPU 
code from pragmas

 
● Used to explore  

large optimization 
space
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Experimental Set-Up
 
● Goal: optimize code using particular 

transformations via pragmas
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Experimental Set-Up
 
● Unroll/tiling transformations using pragmas

#pragma hmppcg unroll 2, contiguous
for (i = 0; i < N; i++)
{

B[i] = A[i];
}

for (i = 0; i < N/2; i++)
{

B[2*i] = A[2*i];
B[2*i + 1] = A[2*i + 1];

}

#pragma hmppcg unroll 2, split
for (i = 0; i < N; i++)
{

B[i] = A[i];
}

for (i = 0; i < N/2; i++)
{

B[i] = A[i];
B[i + N/2] = A[i + N/2];

}

(a) contiguous unroll

(b) split unroll

#pragma hmppcg tile i:2
for (i = 0; i < N; i++)
{

B[i] = A[i];
}

for (i = 0; i < N/2; i++)
{

for (i_2 = 0; i_2 < 2; i_2++)
{

B[2*i + i_2] = A[2*i + i_2];
}

}

(c) tiling
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Experimental Set-Up

● HMPP-annotated codes generated w/ python 
script
○ Uses kernel code w/ placeholders for pragmas

GEMM code kernel w/ placeholders for pragmas 8/27



Experimental Set-Up

● Execution flow

Kernel Code w/ 
placeholders

Python script w/ 
desired optimizations

Code w/ 
HMPP Opts

Run HMPP Compiler

Optimized HMPP 
Executables
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Experimental Set-Up

● Initial experiments on 
C2050 GPU
○ Fermi architecture
○ 448 cores

 

● CUDA 4.0
○ CUDA codes compiled w/ 

Open64-based compiler
○ OpenCL codes compiled w/ 

LLVM-based compiler
10/27



Experimental Results
 
● 2D Convolution

○ Dimensions: 4096 X 4096
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Experimental Results
 
● 2D Convolution

○ Experiments using HMPP-generated CUDA and 

OpenCL code

○ Improved performance using initial loop order w/ 

unrolling/tiling on inner loop

■ Alternate loop order increases runtime

■ Unrolling/tiling on outer loop increases runtime

 
 

 12/27



Experimental Results
 
● 2D Convolution

○ Results using contiguous and split unroll in inner loop:
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Experimental Results
 
● 3D Convolution

○ Dimensions: 256 X 256 X 256

for (i = 1; i < NI - 1; ++i) // 0
{   

for (j = 1; j < NJ - 1; ++j) // 1
{              

for (k = 1; k < NK - 1; ++k) // 2
{

B[i][j][k] = c11 * A[i - 1][j - 1][k - 1] 
+ c13 * A[i + 1][j - 1][k - 1] + c21 * A[i - 1][j - 1][k - 1]
+ c23 * A[i + 1][j - 1][k - 1] + c31 * A[i - 1][j - 1][k - 1] 
+ c33 * A[i + 1][j - 1][k - 1] + c12 * A[i + 0][j - 1][k + 0] 
+ c22 * A[i + 0][j + 0][k + 0] + c32 * A[i + 0][j + 1][k + 0] 
+ c11 * A[i - 1][j - 1][k + 1] + c13 * A[i + 1][j - 1][k + 1]
+ c21 * A[i - 1][j + 0][k + 1] + c23 * A[i + 1][j + 0][k + 1] 
+ c31 * A[i - 1][j + 1][k + 1] + c33 * A[i + 1][j + 1][k + 1];

}
}

}
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Experimental Results
 
● 3D Convolution

○ Results using different permutations
■ No unrolling/tiling
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Experimental Results
 
● 3D Convolution

○ Experiments with unrolling/tiling in best permutations
 

○ CUDA results using (1, 3, 2) permutation:
■ With no unrolling/tiling: 21.2x speedup

■ With unrolling loop ‘3’ by a factor of 4 using ‘contiguous’ and 
‘guarded’ pragmas: 27.2x speedup

○ OpenCL results
■ Best found config. used (2, 3, 1) permutation without unrolling/ 

tiling
■ 22x speedup
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Experimental Results
 
● Polybench Benchmark Suite

○ Codes for linear algebra, data-mining, and stencils

○ Converted codes to CUDA / OpenCL using HMPP

■ Optimized codes using HMPP pragmas

■ Search space of many possible transformations

○ Constructed hand-written CUDA/OpenCL kernels

 
Available at http://www.cse.ohio-state.edu/~pouchet/software/polybench/
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Polybench Suite w/ CUDA
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Polybench Suite w/ OpenCL
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Best found transformations on 
selected codes

Code Best Found Transformations 
(CUDA)

Best Found Transformations 
(OpenCL)

ATAX Reverse order of 2nd nested loop 
set and tile 1st and 2nd loop w/ 
factor 4

Reverse order of 2nd nested loop 
set and tile 1st and 2nd loops w/ 
factor 2

CORR Parallelize 8th loop rather than 7th 
loop and tile 9th loop w/ factor 4

Parallelize 8th loop rather than 7th 
loop and unroll 9th loop using 
‘contiguous’ and ‘remainder’ 
options w/ factor 2

GEMM Unroll 3rd loop using ‘split’ and 
‘guarded’ options with factor 3

Unroll 3rd loop using ‘contiguous’ 
and ‘guarded’ options with factor 8

20/27



HMPP Auto-tuning Results 
Discussion

● Important to find best permutation for memory 
coalescence

 
● Particular loops parallelized can be significant

○ Default HMPP configuration may not be optimal

 
● Applying unrolling to innermost loop often 

contributes to best speedup
○ Unrolling outermost loop often hurts performance
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Results on GTX 280 (Tesla)
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Results on 9800 GT
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Belief Propagation for Stereo Vision
 

 
 
 
● Computes disparity map from stereo set of 

images
 

● Parallelize code available online using 
HMPP
○ Optimize using HMPP pragmas
○ Compare to manual CUDA implementation
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Results for Belief Propagation
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Future Work
 

● Use additional code transformations

● Run experiments on additional GPU and 

other many-core architectures

● Develop model to optimize any input kernel
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Conclusions
 
● Developed optimized GPU kernels using auto-

tuning w/ HMPP
○ Codes available online at http://www.cse.ohio-state.

edu/~pouchet/software/polybench/GPU
 

● Improved runtime over default
○ Method works across architectures
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