
Hierarchical Belief Propagation To Reduce Search Space Using CUDA for Stereo
and Motion Estimation

Scott Grauer-Gray and Chandra Kambhamettu
University of Delaware

Newark, DE 19716
{grauerg, chandra}@cis.udel.edu

Abstract

This paper describes a hierarchical belief propagation
implementation in which a ’rough’ disparity map calcula-
tion or motion estimation in higher levels is used to limit
the search space and enable the calculation of the desired
disparity map/set of motion vectors using a smaller search
space than traditional belief propagation. We implement
our algorithm on the GPU using the CUDA architecture and
explore a number of implementation details with promising
results; it is clear that the storage requirements of belief
propagation can be significantly reduced using our method
without too large of a sacrifice in the accuracy of the re-
sults. In addition, we take advantage of the interpolation
capabilities built into the GPU in order to retrieve the com-
puted disparities/motion vectors at sub-pixel accuracy with-
out making any change in implementation.

1. Introduction

Belief propagation for stereo processing is introduced
and described by Sun et al. in [10]. Since then, it
has developed into a popular algorithm for the computa-
tion of a disparity map from a pair of stereo images, as
evidenced by the fact that three of the top five scoring
implementations in the Middlebury Stereo evaluation de-
scribed by Scharstein and Szeliski [9] use the algorithm
in some manner as a part of their overall implementation
(see http://vision.middlebury.edu/stereo/ for current rank-
ings). Belief propagation is known to retrieve relatively ac-
curate results, but the algorithm is limited by high storage
requirements; each pixel in the image must hold 4 ’mes-
sage’ values and a ’data cost’ value for every disparity can-
didate. In this paper, we present a belief propagation im-
plementation in which a hierarchical scheme is employed
to reduce the disparity search space, lowering the storage
requirement of the implementation.

2. Overview of Belief Propagation

Belief propagation is a general-purpose, iterative al-
gorithm used for inference on Markov Random Fields
(MRFs). Sun shows in [10] that the stereo vision problem
can be converted to an NP-hard energy minimization prob-
lem which is equivalent to finding the maximum a posteriori
(MAP) estimator of a MRF, and belief propagation can be
used to retrieve an approximate solution. The total energy
is equal to the sum of the data costs for each pixel at the as-
signed disparity plus the discontinuity costs for each pair of
neighboring pixels with assigned disparity values. The data
cost is computed using the brightness consistency assump-
tion where the data cost increases as the difference in inten-
sity between corresponding pixels increases, while the dis-
continuity cost increases as the disparity difference between
neighboring pixels increases. In the experiments described
in this paper, both the data and discontinuity costs are com-
puted using the truncated linear model where the costs in-
crease linearly with an increase in the intensity/disparity
difference up to a given ’truncation’ parameter, and a third
parameter controls the weight of the data cost versus the
discontinuity cost.

Belief propagation for stereo processing operates via the
utilization of the data costs together with the four sets of
message values corresponding to each possible disparity at
each pixel. In each iteration, the current set of values are
used to compute and send a vector of updated message val-
ues to each 4-connected neighboring pixel. After all iter-
ations are complete, these values are used to compute the
estimated disparity value at each pixel. Belief propagation
generally gives good results, but the storage requirement
needed in order to run the algorithm is O(5 * image height
* image width * number of possible disparity values) due to
the necessity of storing the data costs and message values
for each possible disparity at each pixel.



3. Related Work in Belief Propagation
Felzenszwalb and Huttenlocher present various methods

to speed up a belief propagation implementation in [4]. One
of these methods is a hierarchical belief propagation algo-
rithm: this method uses a pyramid scheme in which the
width and height of the algorithm components are halved
with each successive level of the pyramid, and message val-
ues from higher levels in the pyramid are used to initialize
message values in the lower levels. However, this method
is only designed to decrease the number of iterations neces-
sary for the message values to converge; it does not reduce
the disparity search space or the storage requirements of the
implementation. In [6], Isard and MacCormick speculate
that a hierarchical approach which reduces the search space
at each pixel is possible, but postpone the work for a future
paper.

Brunton et al. [3], Yang et al. [8], and Grauer-Gray et
al. [5] each present hierarchical belief propagation imple-
mentations which take advantage of the parallel processing
power of the graphics processing unit (GPU) in order to de-
crease the running time of the implementation. Two of these
works ([3] and [8]) map their implementation to a graph-
ics API in order to utilize the GPU, while the other ([5])
uses the GPU via the Compute Unified Device Architecture
(CUDA) technology from nVidia. However, none of these
approaches take steps to reduce the search space at each
pixel.

An alternate approach to reducing the storage require-
ments of belief propagation is presented by Liang et al. in
[7]; this work presents a tile-based approach to belief prop-
agation that requires only 1-5% of the storage requirements
of ‘regular’ belief propagation while achieving similar re-
sults. However, this approach does not reduce the search
space at each pixel, instead reducing the storage require-
ments by repeatedly running belief propagation iterations
on individual ‘tiles’ and storing the outbound message val-
ues that are needed for input to neighboring tiles.

4. Outline of Our Belief Propagation Imple-
mentation

In our implementation, we use a hierarchical scheme in
which ’rough’ results computed at higher levels are used
to initialize the search space at lower levels, where the re-
sults are ’fine-tuned’. We begin at the top level with a rela-
tively large increment between disparity candidates and de-
crease the increment by some proportion with each succeed-
ing level, while the number of disparity candidates remains
constant. As a result, the magnitude of the range between
the minimum and maximum disparity candidates decreases
with each level down the hierarchy.

In each level, we retrieve the estimated disparity at each
pixel, and use this estimated disparity as the midpoint of

the disparity range for the corresponding pixel in the next
level, though adjustments may be necessary to account for
the condition that the entire disparity range of the lower
level pixel must be within the disparity range of the cor-
responding pixel at the higher level. The implementation is
designed and executed using the parallel processing power
of the graphics processor unit (GPU) via the Compute Uni-
fied Device Architecture (CUDA) from nVidia. We omit an
extensive CUDA introduction in this paper; the interested
reader is invited to look at the documentation provided by
nVidia [1].

As discussed in section 3, Grauer-Gray et al. [5] previ-
ously presented a belief propagation implementation using
the GPU and CUDA, and the results show that the archi-
tecture can be used to speed up a related implementation
without losing accuracy. In addition to taking advantage
of the GPU’s processing capabilities, our implementation
takes advantage of the hardware’s interpolation capabilities
to retrieve sub-pixel disparities without making any changes
to the general implementation.

Initially, we hold the image resolution of each level con-
stant, making for a ’cuboid’ level hierarchy rather than a
pyramidal one, and we initialize the message values at each
level to 0 rather than using the message values from upper
levels to initialize the message values at lower levels. Later,
we adjust the implementation to use a pyramidal hierarchy
and initialize the message values at lower levels with mes-
sage values calculated at upper levels in order the reduce
the number of iterations needed for message value conver-
gence. Our implementation takes advantage of the checker-
board scheme presented by Felzenszwalb and Huttenlocher
[4] to half the number of messages passed in each itera-
tion, dividing the pixels into two ’sets’ as represented by a
checkerboard and passing message values from one set to
the other in each iteration.

One issue with this hierarchical scheme is that dispar-
ity candidates are ’skipped’ at higher levels where the dis-
parity candidate increment is greater than the increment at
the bottom level. In order to mitigate this factor, we use
the disparity candidate increment of the bottom level when
computing the data costs at each level, setting the data cost
corresponding for each candidate disparity to the minimum
of the data costs that this disparity could correspond to at the
bottom level. In a two-level scheme where the disparity in-
crement is 2 at the upper level and 1 at the bottom level, the
data cost for each candidate disparity at the upper level is
the minimum of data costs corresponding to three different
disparities: the candidate disparity minus 1, the candidate
disparity itself, and the candidate disparity plus 1.

5. Results Using Initial Scheme
We run our initial implementation on the Tsukuba stereo

set using a data cost cap of 15.0, a discontinuity cost cap of



Start Disparity Incr.
/ Num Levels

% Bad Matches w/
Error Threshold 1.0

1 / 1 4.85
2 / 2 4.88
4 / 3 5.71
8 / 4 6.56

Table 1. Results using the cuboid hierarchy when varying the start-
ing disparity candidate increment and number of levels such that
the disparity candidate increment is 1 at the bottom level.

1.7, and a data weight set to 0.07 after smoothing the im-
ages with a CUDA-implemented Gaussian filter of sigma
1.0. The reference image of the stereo set and the ground
truth disparity map are shown in the top row of figure 1.
First, we run the implementation using a single level with
200 iterations and a disparity range from 0 to 16 in incre-
ments of 1. The resulting disparity map is shown in the left
side of the second row of figure 1.

Next, we run our implementation on the same images
using two levels with 200 iterations per each level. The in-
crement in disparity candidates is set to 2 at the upper level
and is halved to 1 in the lower level. This results in a search
space of 9 possible disparities at each level, nearly halving
the space needed for the data cost and message values in
the implementation. The resulting disparity map is shown
on the right side of the second row of figure 1. We con-
tinue to run our implementation on the Tsukuba set using
3 and 4 levels, with disparity candidate increments starting
at 4 and 8 and search spaces of 5 and 3 possible dispari-
ties, respectively. The disparity increment is halved with
each succeeding level, with a final disparity increment of
1 in each experiment. The results of these experiments are
shown in bottom row of figure 1.

Based on the resulting disparity maps, the sacrifice of
any accuracy in each successive experiment does not appear
to be that high given the saving of storage space. We com-
pute the error in each experiment in terms of the percent
of ’bad pixels’ with a difference in disparity greater than
1.0 from the ground truth (excluding a border region of 18
pixels on each edge); the error is 4.85% when the disparity
candidate increment starts at 1 and gradually increases up
to 6.56% when the disparity candidate increment starts at 8,
with all the results in table 1.

6. Results Using Pyramid Hierarchy

Next, we modified our implementation to use a ’pyra-
mid’ hierarchy in which each pixel at each level (other than
the bottom level) corresponds to a 2 X 2 block of pixels
in the next level down in the hierarchy. The algorithm is
modeled after the multi-grid belief propagation described
by Felzenszwalb and Huttenlocher in [4] such that the data

Figure 1. Top level (left to right): Tsubuka reference image and
ground truth disparity map. Middle and lower levels (left to right
then top to bottom): Resulting disparity map after running imple-
mentation using 1, 2, 3, and 4 levels with the disparity candidate
increment beginning at 1, 2, 4, and 8, respectively, and cut in half
with each successive level.

Starting Disparity
Incr. / Num Levels

Bad Matches w/
Error Threshold 1.0

1 / 1 4.85
2 / 2 5.37
4 / 3 5.55
8 / 4 7.43

Table 2. Results using the pyramid hierarchy when varying the
starting disparity candidate increment and number of levels such
that the disparity candidate increment is 1 at the bottom level.

cost corresponding to each disparity candidate at each pixel
is equal to the sum of the data costs corresponding to the
disparity candidate at all the bottom level pixels correspond-
ing to the pixel at the current level. The results of running
pyramidal belief propagation using 1, 2, 3, and 4 levels with
disparity candidate increments starting at 1, 2, 4, and 8, re-
spectively, is shown in figure 2 and table 2; note that the
results given in the table exclude a border region of 18 pix-
els on each edge.

7. Results Using Pyramid Hierarchy and Mes-
sage Propagation From Upper Levels

Next, we modify our implementation to use the message
values from higher levels to initialize the message values at



Figure 2. Resulting disparity maps (from left to right then top to
bottom) after running implementation using the ’pyramid’ hierar-
chy with 1, 2, 3, and 4 levels and disparity candidate increments
beginning at 1, 2, 4, and 8, respectively, and then cut in half with
each successive level.

lower levels. Since the increment between disparities is re-
duced with each succeeding level down the hierarchy, the
message values are not available for every disparity candi-
date in the lower level; the disparity candidate in the lower
level may be between two disparity candidates in the upper
level. One potential method to retrieve the desired message
values is to use interpolation between the nearest disparity
candidates at the previous level. We run our implementation
using this method with 2 levels, 200 iterations per level, and
with a disparity candidate interval of 2 at the upper level and
1 at the lower level. The resulting disparity map is shown in
left of figure 3; it is clear from these results that this method
does not retrieve an accurate disparity map.

A likely explanation for the lack of accuracy using in-
terpolation is that there is no guarantee that the message
values obtained from the neighboring disparity candidates
can predict the ’correct’ message values corresponding to
the candidates in-between. In the case where the ’middle’
disparity candidate at the lower level is the ’best’ candidate,
the message values corresponding to that disparity are ide-
ally less than the message values corresponding to all other
disparity candidates. However, there is no way this will be
reflected using interpolation from the neighboring dispar-
ities. One way to handle this scenario is to use the min-
imum of the surrounding message values, which prevents
this ’middle’ disparity candidate from starting with a dis-
advantage in terms of being the ’best’ disparity value. The
resulting disparity map using this approach is displayed in
the right of figure 3, and appears to be much closer to the
ground truth than the previous result.

Figure 3. Computed disparity map from running implementation
using the ’pyramid’ scheme using 2 levels starting with a disparity
candidate increment of 2 that is halved to 1 at the lower level. The
left image shows the resulting disparity map when the lower level
message values are retrieved using interpolation, and the right im-
age shows the resulting disparity map when the lower level mes-
sage values are retrieved using the minimum of the neighboring
values.

8. Optimizing the Storage Requirements and
Running Time of the Implementation

Thus far, our focus has been on accuracy of the results
rather than running time. However, running time is often
an important consideration in a stereo processing imple-
mentation, particularly when considering the possibility of
real-time analysis. Our implementation is performed on the
GPU using CUDA, in part because the results presented by
Grauer-Gray et al. in [5] makes it clear that the process-
ing power of the GPU can be used to decrease the running
time of the implementation. In this section, we explore ad-
justments to the number of iterations, the starting disparity
candidate increment, and the proportion at which to adjust
the disparity candidate increment between levels in order
to retrieve the optimal balance between the storage require-
ments, running time, and accuracy of our implementation.
Unless otherwise specified, each of the following experi-
ments use the pyramid hierarchy with message propagation
from upper levels in order to minimize the number of itera-
tions needed for message value convergence.

The results in this section are generated using a nVidia
8600M GT GPU with four multiprocessors on a laptop with
a Intel Core 2 Duo CPU running at 2.00 GHz. As shown in
[5], the running time could be further decreased by running
the implementation on a computer with a higher-end GPU.

8.1. Adjustments in the Iteration Count

We begin by looking at an implementation that begins
with a disparity candidate increment of 8 and is cut in half
in each subsequent level until 1, resulting in a total of 4 lev-
els. In this experiment, we compare the running times and
accuracy for varying numbers of iterations. We run these
experiments using message propagation from upper level
using the minimum message value corresponding to the sur-
rounding disparity candidates as described in section 7, and
also with reset message values in each iteration. The results



Num
Iters

Running
time
(ms)

% Bad Matches w/ Error
Threshold 0.0 (Min mess. vals
prop. / Reset message vals)

200 2920 15.11 / 15.76
150 2268 15.03 / 15.79
100 1568 15.04 / 15.77
50 884 15.57 / 16.59
25 551 17.18 / 18.41
15 414 19.84 / 20.63
10 345 21.02 / 22.53
5 281 25.25 / 27.57

Table 3. Results when varying the number of message passing it-
erations in the implementation.

Starting Dis-
parity Incr.

% Bad Matches w/ Error
Threshold 0.0 / 1.0

1.0 15.6 / 7.44
1.5 17.0 / 7.30
2.0 17.1 / 7.59
3.0 17.8 / 7.17
4.0 19.1 / 9.62
6.0 22.0 / 8.00
8.0 24.1 / 8.84
12.0 24.8 / 7.47
16.0 22.5 / 10.8

Table 4. Results when varying the starting disparity candidate in-
crements.

are shown in table 3 where the percent of bad matches rep-
resents the proportion of pixels where the integer calculated
disparity value differs from the ground truth disparity value
by a value greater than 0.

8.2. Adjustments in Disparity Increment Start With
Constant Levels in Hierarchy

Next, we use the pyramid hierarchy with message propa-
gation and hold the number of levels constant at 5, the num-
ber of iterations at each level constant at 10, and set the min
and max disparities equal to 0 and 16, respectively. We ad-
just the starting disparity candidate increment between trials
but continue to hold the proportional change in disparities
between levels constant at 0.5, using the interpolation ca-
pabilities built into the GPU to retrieve the data costs at
non-integer and sub-pixel disparities. The final calculated
disparities are often non-integer values, but are rounded to
integer values for final analysis. The results are shown in
table 4.

Rate Incr. Ad-
justed

% Bad Matches w/ Error
Threshold 0.5 / 1.0

0.4 16.5 / 11.4
0.5 14.9 / 9.56
0.6 14.8 / 8.08
0.7 13.8 / 6.44
0.8 24.2 / 7.54
0.9 17.1 / 8.44
1.0 11.7 / 4.86

Table 5. Results using a disparity candidate increment starting at
1.0 and adjusting the increment change between levels.

8.3. Adjusting the Disparity Increment Proportion
Between Levels

The increment in disparity candidates has been cut in
half when progressing down the hierarchy of levels in all
experiments thus far. Now, we experiment with adjusting
the rate at which the disparity candidate increment is ad-
justed between levels, holding the number of levels con-
stant at 5 and the number of iterations per level constant
at 10. In these experiments, we begin with disparity candi-
date increments of 1.0 and 2.0 and vary the rate at which the
increment is adjusted between 0.4 and 1.0, with the rate rep-
resenting the value that the increment at the previous level
is multiplied by to retrieve the increment at the succeeding
level.

In these experiments, the neighboring pixels may not
have a message value that corresponds to each disparity can-
didate at each level, even when the candidate is within the
pixel’s disparity range. As a result, we use interpolation to
retrieve the message value corresponding to the desired dis-
parity. In addition, we stretch the disparity candidate sam-
pling to the first ’whole’ disparity candidate increment be-
yond the range in our sampling-invariant implementation,
but then clamp the computations at the ’edge’ samples to
differ by no more than half the current disparity candidate
increment of the ’target’ candidate to prevent ’leaking’ the
data costs of the ’target’ candidate into neighboring dispar-
ity candidates. We do not round the computed disparities
in these experiments, allowing for results at the sub-pixel
level. Our results show the percent of bad matches with
error thresholds of 0.5 and 1.0. It should be noted that in
the second set of trials where the disparity candidate incre-
ment begins at 2.0, the disparity increment remains above
1.0 when the increment adjustment rate is 0.9 and 1.0, mak-
ing it impossible for the error to be below 0.5 for some pix-
els.

One peculiar result in each set of experiments is that
the error rate increases between a disparity increment rate
change of 0.8 and 0.9 and then drops dramatically when the
disparity candidate increment rate change between levels is



Rate Incr. Ad-
justed

% Bad Matches w/ Error
Threshold 0.5 / 1.0

0.4 17.1 / 11.1
0.5 16.0 / 9.58
0.6 15.3 / 7.46
0.7 25.2 / 8.03
0.8 38.3 / 8.10
0.9 33.1 / 15.9
1.0 67.2 / 6.25

Table 6. Results using a disparity candidate increment starting at
2.0 and adjusting the increment change between levels.

increased to 1.0 (when the disparity candidate increment is
unchanged between levels). To explore this observation, we
inspect the resulting disparity maps at the 0.9 and 1.0 rate
change in the trials where the disparity candidate increment
begins at 1.0. The resulting disparity maps are shown in fig-
ure 4. It appears that when the rate change is near 1.0 but
not ’at’ 1.0, the algorithm allows for too much flexibility in
the disparity candidates between levels.

Figure 4. Computed disparity map resulting from running our im-
plementation with a disparity candidate increment rate change of
0.9 (left) and 1.0 (right) between levels.

9. Subpixel Accuracy in Resulting Disparity
Map

Next, we use our implementation to retrieve the resulting
disparity maps at sub-pixel accuracy. A number of meth-
ods previously used to retrieve subpixel disparities are de-
scribed and referenced by Scharstein and Szeliski [9]. Our
implementation takes advantage of the interpolation capa-
bilities of the GPU to retrieve the data costs at non-integer
disparity candidates, treating a non-integer disparity candi-
date the same way as an integer disparity candidate without
any change in implementation. Since the ground truth of the
Tsukuba stereo set used in the previous experiments con-
tains only integer disparities, we use the ’Venus’ stereo set
shown in figure 5 for the experiments in this section. The
ground truth disparities in the ’Venus’ stereo set range from
3.0 to 19.75 and are given in increments of one-eighth of a
pixel.

Figure 5. Top: Reference image (left) and ground truth dispar-
ity map (right) from the ’Venus’ stereo set. Bottom: Resulting
disparity maps from running one level of belief propagation with
disparity increments of 0.5 (left) and 1.0 (right)

Disparity
Incr.

% Bad Matches w/ Error
Threshold 0.5 / 1.0

0.4 3.55 / 2.13
0.5 3.03 / 2.00
0.6 3.89 / 2.08
0.7 4.92 / 2.04
0.8 7.99 / 2.11
0.9 7.20 / 2.14
1.0 9.02 / 2.32

Table 7. Results of running a single level w / 200 iterations on the
’Venus’ stereo set with varying disparity candidate increments.

9.1. Results Using a Single Level

First, we run our implementation at a single level with
200 iterations using disparity candidate increments ranging
from 0.4 to 1.0. We do not perform any smoothing of the
input images and the disparity candidate range extends from
0.0 to 20.0; otherwise the parameters are the same as in
the Tsukuba implementation. The resulting disparity maps
using disparity increments of 0.5 and 1.0 are shown in figure
5, and the results showing the percentage of ’bad’ pixels
beyond an error threshold of 0.5 and 1.0 are shown in table
7; note that these results exclude a ’border’ region of 20
pixels around the resulting disparity map.

9.2. Results Using a Hierarchical Implementation

Next, we run our implementation using the ’cuboid’ hier-
archy described in section 4 with message propagation be-
tween levels using the minimum surrounding message value
method described in section 7. We begin with a disparity



Number of
Levels

% Bad Matches w/ Error
Threshold 0.25 / 0.5 / 1.0

1 41.1 / 9.02 / 2.32
2 16.2 / 4.22 / 2.18
3 8.74 / 3.33 / 2.02
4 8.11 / 3.31 / 2.02

Table 8. Results of running a single level w / 200 iterations on the
’Venus’ stereo set with varying disparity candidate increments.

candidate increment of 1.0 and halve the increment in each
subsequent level; the storage requirements remain constant
regardless of the number of levels. We run the implemen-
tation using 1, 2, 3, and 4 levels, with disparity candidate
increments at the bottom level of 1.0, 0.5, 0.25, and 0.125,
respectively. The results showing the percent of ’bad’ pix-
els beyond error thresholds of 1.0, 0.5, and 0.25 are shown
in table 7; these results exclude a ’border’ region of 20 pix-
els on each edge of the resulting disparity map. The use of
multiple levels of decreasing disparity candidate increments
improves the results over a single level with a disparity can-
didate increment of 1.0, but none of these results are as ac-
curate as the result presented in section 9.1 when the dis-
parity candidate increment is initially set to 0.5. However,
the disparity candidate search space and overall storage re-
quirements in the implementation presented in this section
are half that of the aforementioned single-level implemen-
tation that retrieved a slightly more accurate disparity map.

10. Using Hierarchical Implementation for
Motion Estimation

Belief propagation can been used for motion estimation
as well as stereo, as shown by Isard and MacCormick [6]
and Grauer-Gray et al. [5]. However, the presence of a
two dimensional motion candidate search space often leads
to larger and possibly infeasible storage requirements when
attempting traditional belief propagation for motion estima-
tion. In this section, we show how our hierarchical belief
propagation implementation makes motion estimation fea-
sible.

We run our implementation on the 584 X 388
Dimetrodon image pair presented by Baker et al. [2] us-
ing the Manhattan distance between assigned motion vec-
tors for the discontinuity cost. The first frame of the pair, the
ground truth motion, and a legend showing the color coding
of the motion is shown in figure 6. The movement present in
this image pair is not that large in magnitude, but fine preci-
sion at the subpixel level is required for accurate results. We
run our ’cuboid’ hierarchy implementation described in sec-
tion 4 using a motion range from -5.0 to 5.0 on the x and y
axis and message propagation between levels using the min-
imum surrounding message value as described in section 7.

Number
of Levels

Ave. End-
point Error

% Bad Matches w/ Er-
ror Threshold 0.1 / 0.5
/ 1.0

3 0.314 94.9 / 10.7 / 3.89
4 0.238 82.9 / 6.78 / 1.90
5 0.188 66.0 / 6.37 / 1.01

Table 9. Results of running our motion estimation implementation
using 3, 4, and 5 levels.

The interval between each motion candidate is set to 2.5
in the top level, resulting in 5 possible motions on each axis
for a total search space of 25 possible motions, and is halved
with each subsequent level. We run the implementation us-
ing 3, 4, and 5 levels with 200 message passing iterations
per level, a maximum data cost of 15.0, a maximum discon-
tinuity cost set to infinity, and a data cost weight of 0.07.
The resulting motion using 5 levels is shown in figure 6,
and the results for each trial using the error in flow endpoint
measure described in [2] is shown in table 9. Our results are
closer to the ground truth than the results corresponding to
the motion algorithms described in [2] for the Dimetrodon
pair (see http://vision.middlebury.edu/flow/), but more ex-
periments are necessary to benchmark our implementation
in relation to the current state-of-the-art in motion estima-
tion; one particular challenge in such a task is maintaining a
constant set of parameters across image sets with different
magnitudes of motion.

Figure 6. Top: First frame of Dimetrodon image pair (left) and leg-
end showing color coding of motion (right) Bottom: ground truth
motion (left) and computed motion using implementation with 5
levels (right).

11. Conclusions and Future Work
We have presented a method to reduce the storage re-

quirements of a stereo or motion estimation belief propa-
gation implementation without sacrificing much in terms of
the accuracy of the results, as well as how our GPU im-



plementation can be used without modification to retrieve
sub-pixel accuracy in the resulting disparity map or motion
vectors. For image sets with a large disparity/motion range
or with sub-pixel accuracy requirements, our belief propa-
gation implementation may be used where traditional belief
propagation is not feasible due to overwhelming storage re-
quirements.

In the future, we plan to further explore tweaking the pa-
rameters and algorithm details to retrieve the optimal bal-
ance of storage requirements and running time versus ac-
curacy in the results as well as explore other options to
improve the results on different sets of images without in-
creasing the storage requirements of the implementation.
One possibility is to incorporate the gradient constancy as-
sumption as presented by Zhang and Negahdaripour in [11]
into our implementation; this addition has been shown to
increase the robustness of a related belief propagation im-
plementation. Finally, we plan to investigate how the ideas
presented in this paper could be incorporated into related
work that uses belief propagation, including the tile-based
approach discussed in section 3 as well as the some of the
top-scoring algorithms in the Middlebury stereo evaluation.

12. Acknowledgements
This work was partially supported by a U.S Na-

tional Aeronautics and Space Administration award NASA
NNX08AD80G under the ROSES Applied Information
Systems Research program.

References
[1] NVIDIA CUDA Programming Guide: Version 2.3.1.

NVIDIA Corporation, August 2009.
[2] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and

R. Szeliski. A database and evaluation methodology for op-
tical flow. In Computer Vision, 2007. ICCV 2007. IEEE 11th
International Conference on, pages 1–8, Oct. 2007.

[3] A. Brunton, C. Shu, and G. Roth. Belief propagation on the
gpu for stereo vision. In Computer and Robot Vision, 2006.
The 3rd Canadian Conference on, pages 76–76, June 2006.

[4] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient be-
lief propagation for early vision. Int. J. Comput. Vision,
70(1):41–54, 2006.

[5] S. Grauer-Gray, C. Kambhamettu, and K. Palaniappan. Gpu
implementation of belief propagation using cuda for cloud
tracking and reconstruction. In 2008 IAPR Workshop on Pat-
tern Recognition in Remote Sensing (PRRS 2008), pages 1–
4, 2008.

[6] M. Isard and J. Maccormick. Dense motion and disparity
estimation via loopy belief propagation. Technical report,
2005.

[7] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H.
Chen. Hardware-efficient belief propagation. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 80–87, 2009.

[8] R. Y. S. W. M. L. Q. Yang, L. Wang and D. Nister. Real-time
global stereo matching using hierarchical belief propagation.
In British Machine Vision Conf., page 989998, 2006.

[9] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Int. J.
Comput. Vision, 47(1-3):7–42, 2002.

[10] J. Sun, N.-N. Zheng, and H.-Y. Shum. Stereo matching using
belief propagation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 25(7):787–800, 2003.

[11] H. Zhang and S. Negahdaripour. Integrating bc & gc models
in computing stereo disparity as markov random field. Jour-
nal of Multimedia, 2006.


