
GPU Implementation of Belief Propagation Using CUDA for Cloud
Tracking and Reconstruction ∗

Scott Grauer-Gray and Chandra Kambhamettu
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716

{grauerg, chandra}@cis.udel.edu

Kannappan Palaniappan
Dept. of Computer Science

University of Missouri
Columbia, MO 65211

palaniappank@missouri.edu

Abstract

This paper describes an efficient CUDA-based GPU
implementation of the belief propagation algorithm that
can be used to speed up stereo image processing and
motion tracking calculations without loss of accuracy.
Preliminary results in using belief propagation to an-
alyze satellite images of Hurricane Luis for real-time
cloud structure and tracking are promising with speed-
ups of nearly a factor of five.

1. Introduction
The generation of an accurate disparity map given

a pair of stereo images and motion vectors extracted
from a set of sequential images are well-studied prob-
lems in computer vision. Robust estimation of 3D struc-
ture and motion for natural scenes remain challenging
areas of research. One recent advance involves the use
of Markov random field (MRF) models to generate an
NP-hard energy minimization problem, and then using
graph cuts or belief propagation (BP) to generate an ap-
proximate solution with reasonable computational cost.
Implementations of these global methods often gener-
ate disparity maps and motion vectors that are closer to
the ground truth than implementations of local meth-
ods, but it takes longer to generate the results. Ideally,
one wants the accuracy achieved via the global meth-
ods with the running time cost of local methods. One
path towards this goal is to speed up a BP implemen-
tation without losing accuracy, by taking advantage of
the high performance capabilities of Graphics Process-
ing Units (GPUs) available on most personal comput-
ing platforms today. This paper describes a General
Purpose GPU (GPGPU) implementation of the BP al-

∗This work was partially supported by a U.S National Aeronau-
tics and Space Administration award NASA NNX08AD80G under
the ROSES Applied Information Systems Research program.

gorithm using the nVidia Compute Uniform Device Ar-
chitecture (CUDA) language environment.

2. The GPU and CUDA

General-purpose processing on the GPU, known as
GPGPU is currently an active research area since GPUs
are widely available and continue to improve in perfor-
mance faster than CPUs. The capabilities of the GPU
have increased dramatically in the past few years and
the current generation of GPUs have higher floating-
point performance than the most powerful (multicore)
CPUs [1]. The GPU contains hundreds of cores that are
well suited for parallel implementations, using a single-
instruction multiple data (SIMD) programming model.
Many algorithms have been implemented on the GPU,
and the results are often a significant speed-up over the
sequential CPU implementation of the same algorithm.

However, until recently a graphics API and a shader
language such as Cg had to be used to take advantage
of the GPU’s processing power. In addition, GPU pro-
grams could not scatter data to any part of the DRAM
on the GPU. These requirements and limitations added
overhead to any GPU implementation and made pro-
gramming the device more difficult. Recently, nVidia
released CUDA, which allows GPUs to be programmed
using a variation of C with specific parallel extensions
including the capability to perform the scatter memory
operation. This enables algorithms to be implemented
on any CUDA-capable GPU with greater ease of pro-
gramming.

3. Belief Propagation

Belief propagation (BP) is an iterative algorithm that
is used in a number of vision tasks. In the stereo vision



structure estimation problem, BP is used to perform ap-
proximate inference on a NP-hard energy minimization
problem to find an accurate disparity map between a
pair of images. The total energy represents the sum of
the data costs Dp(d) for each pixel p and the disconti-
nuity costs V(dp, dq) for each pair (p, q) of neighboring
pixels. In the stereo vision problem, the data cost Dp(d)
represents the cost of assigning disparity d to pixel p us-
ing the brightness consistency assumption; the data cost
increases as the difference in intensity between corre-
sponding pixels increases. The discontinuity cost V(dp,
dq) represents the cost of assigning disparities dp and dq

to neighboring pixels; this cost increases as the differ-
ence between dp and dq increases. The goal is to find
the disparity map that minimizes the total energy. This
problem is equivalent to finding the maximum a poste-
riori (MAP) estimator of a MRF [3], so an approximate
solution can be found using the loopy BP algorithm that
is used for inference on MRFs.

The BP algorithm runs for a number of iterations.
In each iteration, messages are computed and sent from
each pixel to each of its neighbors, and the values in the
received messages and the data costs are used to com-
pute the messages to send in the next iteration. Each
message can be viewed as a vector containing a value
for each possible label, the label being the disparity
value in the stereo algorithm. When all the iterations
are complete, the values for each label in the messages
as well as the data costs are used to retrieve the esti-
mated disparity at each pixel.

Implementations of stereo BP produce good results,
but the running time is longer than local stereo methods.
Many iterations are required to ensure convergence of
the message values, it takes O(n2) running time to gen-
erate each message where n corresponds to the num-
ber of possible disparity values (labels), and separate
messages must be generated and passed to each pixel’s
four neighbors in each iteration. In [3], Felzenszwalb
presents the following methods to speed up these as-
pects of BP.

First, a hierarchical scheme is introduced where the
output messages from a coarser scale are used to ini-
tialize the messages at a finer scale. This causes the
message values to converge in fewer iterations.

Second, the pixels are divided into sets A and B in
a ‘checkerboard’ manner; each pixel in one set passes
messages to its neighbors in the other set. The workload
in each iteration is cut in half by alternating between
updating the messages in sets A and B.

Finally, the running time to generate each message
is reduced from O(n2) to O(n) when the discontinuity
cost V(dp, dq) is computed using certain models. When
the truncated linear model is used where the disconti-

nuity cost is equal to the difference between dp and dq

bounded by some value t, the message m can be com-
puted in O(n) time as follows (md corresponds to the
message value at disparity d):

1. Initialize the value md at each disparity d by ag-
gregating previous message and data cost values
corresponding to d.

2. Set mmax to the sum of the minimum md and t.

3. Update m in two passes that are performed sequen-
tially and ‘in place’, so each update influences fu-
ture ones

(a) md = min(md, md−1 + 1) from d = 1 to n-1

(b) md = min(md, md+1 + 1, mmax) from d = n-2
to 0

4. Belief Propagation on CUDA
BP has been implemented on the GPU in the past;

both [2] and [5] describe GPU implementations of BP
on a set of stereo images. However, each of these im-
plementations use a graphics API rather than CUDA,
adding overhead and complexity to the implementa-
tions. In particular, the lack of the scatter memory op-
eration forces adjustments to the implementation that
may adversely affect the running time, particularly in
the generation of messages. The BP algorithm maps
more naturally to CUDA, and the remainder of this pa-
per describes a CUDA implementation of the BP algo-
rithm as well as the results.

CUDA is structured such that the GPU works as a
co-processor that processes a kernel function on mul-
tiple threads in parallel. These threads are organized
into a grid of thread blocks. Up to 512 threads can be
grouped together in a thread block where each thread
has a unique index as a member of a 1-D, 2-D, or 3-
D array, and the thread blocks that run the same ker-
nel are placed together in a 1-D or 2-D structure called
a grid. In many ways, the CUDA kernel is analogous
to the fragment shader; the GPU is able to process
multiple threads in parallel that are running the CUDA
kernel or the fragment shader. However, the capabil-
ities of the CUDA kernel go beyond the capabilities
of the fragment shader. Unlike the fragment shader,
the CUDA kernel allows the programmer to define the
thread block dimensions, provides the capability to syn-
chronize threads within a thread block, and is able to
scatter data anywhere in GPU memory.

In the CUDA BP implementation, the truncated lin-
ear model with truncation values Tdata and Tdisc is used
to compute the data and discontinuity costs, and the pa-
rameter λ sets the relative weight of the data cost. For



all stereo experiments shown in this paper, Tdata = 15.0,
Tdisc = 1.7, λ = .07, and the disparity space runs from 0
to 14. The implementation contains the following steps:

1. Calculate the data cost Dp(d) for pixel p at each
point (x, y) at the bottom level 0.

2. Iteratively calculate the data cost for each pixel at
each succeeding level by aggregating the data cost
of the corresponding 2 X 2 block of pixels at the
preceding level.

3. For each level L-1 down to 0

(a) For each pixel in set A or B, compute the
messages to send to neighboring pixels using
the current message values and data costs.
Repeat for i iterations alternating between
sets A and B.

(b) If not at final level, copy the message values
at each pixel to the corresponding 2 X 2 block
of pixels at the next level down.

4. Retrieve the estimated disparity map by finding,
for each pixel, the disparity that minimizes the sum
of the data cost and message values.

Each step of the algorithm can be mapped to the
SIMD model of the CUDA kernel, as the same opera-
tions are independently performed on every pixel. In to-
tal, the CUDA implementation of BP contains five ker-
nels, one for each step/sub-step.

The message values are computed using the O(n) al-
gorithm described in section 3 that includes two passes
through the disparity space. It is notable that the mes-
sage updates can be performed in a single kernel invo-
cation. When the message updates are performed using
fragment shaders in [2], a shader is called for each dis-
parity d in each of the two passes; it is not possible to
write the messages values for multiple disparities in the
same invocation without the scatter operation.

5. Results on BP for Stereo Estimation

The BP algorithm that was implemented in CUDA
is based on the algorithm introduced in [3] and the re-
sulting GPU-based disparity maps were validated to be
nearly identical with the sequential version. It should
be noted that belief propagation based stereo analy-
sis incorporating occlusion handling, sophisticated data
terms and other improvements are among the best
performing algorithms in the Middlebury benchmark
set (http://vision.middlebury.edu/stereo/eval/). Figure
1 shows the results of running the implementation on
two stereo sets of images; the first set is the 384 X 288

Tsukuba set, and the second set is a pair of 512 X 512
satellite images taken by NOAA GOES-9 and GOES-8
during Hurricane Luis on 6 September 1995. In both
cases, the images are first smoothed using a CUDA-
implemented Gaussian filter with σ = 1.0, and then the
CUDA BP implementation is run using 5 levels and 10
iterations per level.

The implementation is then benchmarked and com-
pared to the sequential CPU implementation on two sys-
tems. The first system is an Intel Core 2 Duo CPU run-
ning at 2.00 GHz and a nVidia 8600M GT GPU with
two multiprocessors. The second is a desktop with a
Intel Quad-core Xeon CPU running at 2.00GHz and a
nVidia 8800 GT GPU with 14 multiprocessors. In all
the CUDA tests, the thread block size is set to 32 X 4.

Benchmarking is first performed on the 384 X 288
Tsukuba stereo set; the BP implementations are run on
the set using 5 levels with 6 iterations per level. This
configuration was also benchmarked by Brunton in [2]
on a GPU implementation of BP using the graphics API.
The CPU implementation on the first system (second
system) runs in 2.2 seconds (.35 seconds), while the
CUDA implementation runs in .7 seconds (.33 seconds)
when the time to transfer the image data to the GPU and
the disparity values back to main memory is included,
and .47 seconds (.086 seconds) when the transfer time is
not included. Brunton’s implementation is run on a sys-
tem with a 3.4 GHz Pentium 4 and a nVidia GeForce
6800 GT GPU. The running time of the sequential CPU
implementation on that system is 1.189 seconds, and
the running time of the GPU implementation using the
graphics API is .610 seconds. However, it is not given if
this includes the time to transfer data between the GPU
and the CPU.

The CUDA BP implementation is also benchmarked
on the stereo set of 512 X 512 satellite images to explore
the feasibility of real-time cloud tracking using this im-
plementation. As stated above, these images are first
smoothed using a CUDA-implemented Gaussian filter
with σ = 1.0, and then BP is run on the images using 5
levels and 10 iterations per level. Including the time to
smooth the images, the total running time of the GPU
implementation (sequential implementation) on the im-
ages is 1.6 seconds (10 seconds) on the first system and
.5 seconds (1.3 seconds) on the second system.

6. Results on BP for Motion Estimation

On 6 September 1995, the satellite NOAA GOES-9
generated a nearly 12-h sequence of observations cov-
ering Hurricane Luis. The visible images at 1-minute
interval were available, and it is important to generate
accurate motion vectors showing the cloud movement



Figure 1: Results of the BP implementation on the
Tsukuba stereo set and on a pair of satellite images.

in these images for modeling purposes. BP can be used
to estimate these vectors, but a large number of possible
motion vectors can lead to high storage requirements
and a long running time.

It was shown in section 5 that CUDA can be used to
speed up BP for stereo, and the general structure of a
BP implementation for motion is the same as for stereo.
The main difference is that the labels represent 2D mo-
tion vectors rather than 1D disparity values.

Unfortunately, there is limited storage on the GPU.
This presents a challenge when the BP motion imple-
mentation is run on 512 X 512 satellite images; there is
not enough DRAM available to store all the data costs
and messages to run BP on the full images. One solu-
tion is to divide the images into multiple blocks, run BP
on the blocks, and combine the results. This concept of
block-based BP is presented in [4], and the increase in
error rate using this method is minimal.

Each 512 X 512 image is divided into four 256 X 256
images. The range of motion in the satellite images is [-
5, 5] in the x and y directions, resulting in 121 possible
motions. Each 256 X 256 image is processed using 4
levels with 10 iterations per level, and the results com-
bined to generate a full set of motion vectors.

The resulting motion for a pair of sequential satel-
lite images is shown in Figure 2. Benchmarking is per-
formed on the two systems described in section 5. On
the first system (second system), the total running time
of the GPU implementation is 15 seconds (4.5 seconds).
Then, to establish a basis of comparison, a sequential
CPU implementation of the algorithm is also bench-
marked. There is more space in main memory than
in GPU memory, so it is not necessary to divide the
images when running the CPU implementation. Five
levels with 10 iterations per level are processed on the

complete images, and the running time is 64 seconds
(15 seconds) on the first system (second system). It is
clear that the use of the GPU results in a faster running
time.

Figure 2: Results of the BP implementation for mo-
tion analysis on a set of satellite images.

7. Conclusions

The CUDA BP implementation presented in this pa-
per can be used as part of a cloud-tracking system as
discussed in Section 1. Given a set of cloud images,
the implementation is capable of quickly producing an
accurate disparity map or set of motion vectors. Future
steps will include exploring the possibility of temporal
smoothing of the output values over a sequence of im-
ages, and investigating semi-fluid based regularization
schemes for robust disparity or motion estimation.

References

[1] NVIDIA Corporation: NVIDIA CUDA compute unified
device architecture programming guide. NVIDIA Cor-
poration, Jan 2007.

[2] A. Brunton, C. Shu, and G. Roth. Belief propagation on
the GPU for stereo vision. In Proc. 3rd Canadian Conf.
Computer and Robot Vision, page 76, 2006.

[3] P. Felzenszwalb and D. Huttenlocher. Efficient belief
propagation for early vision. In IEEE Int. Conf. Com-
puter Vision and Pattern Recognition (CVPR’04), pages
261–268, 2004.

[4] Y. Tseng, N. Chang, and T. Chang. Low memory
cost block-based belief propagation for stereo correspon-
dence. In IEEE Int. Conf. Multimedia and Expo, pages
1415–1418, 2007.

[5] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and
D. Nistér. Real-time global stereo matching using hier-
archical belief propagation. In British Machine Vision
Conf., pages 989–998, 2006.


