
Real-Time Generation of Autostereoscopic Images

Scott Grauer-Gray
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716

grauerg@cis.udel.edu

Abstract

This paper explores the creation of autostereocopic
images using a light field with a focus on real-time gen-
eration of these images using the GPU.

1. Introduction

The generation of autostereoscopic images can be a
challenging problem in many situations. One method of
generation is to generate an integral photograph where
an array of packed-together lensets is used to capture
the desired autostereoscopic display. However, there
are complications with this method as descibed by Isak-
sen in [2]. Isaksen goes on to describe a novel method
of autostereoscopic image generation via a reparame-
terization of a light field. We explore the possibility of
real-time autostereoscopic image generation using this
method.

2. Light Field Framework Using Reference
Image Database

In [2], Isaksen presents a light field parameterization
described with a camera surface and a focal surface, in
which a mapping between the focal surface and the im-
age plane for each camera is used to determine the view
of the scene from a virtual camera given a database
of reference images. This flexible parameterization is
shown in figures 1 and allows for effects such as vari-
able aperture, variable focus, and multiple apertures and
focal surfaces.

3. Autostereoscopic Image Generation Us-
ing Light Field

Isaksen goes on to show how this camera surface-
focal surface parameterization can be used to generate
a direct viewing of the light field, which is essentially

Figure 1: Display of light field parameterization pre-
sented by Isaksen.

equivalent to the creation of an autostereoscopic display
of the image. The view from each camera is generated
for each of a set of points on the focal surface. The
set of views from each camera for a given focal sur-
face point are combined to form a sub-image in the au-
tostereoscopic display, and the sub-images representing
each view are combined to form the output autostereo-
scopic image.

3.1. Real-Time Generation of Autostereoscopic
Image

We explore the generation of autostereoscopic im-
ages on the CPU and the GPU, looking at the possibil-
ity of real-time generation of autostereoscopic images
at dynamically changing focal surfaces and rendering
a variable number of points and locations on the focal
surface. In our implementation, we render from every
camera in the given database of images. In cases where
the view of a focal surface point from given camera is
not available, the view is set to a default ’black’ color
for that camera.

3.2. Varying the number and location of focal
surface points

Our implementation allows for the user to easily ad-
just the number and the outer bounds of the rendered



focal surface points. The choice of more points gives
more information about the image, but can result in a
larger output image than desired and takes longer to pro-
cess, while rendering using fewer surface points allows
for quicker generation of autostereoscopic images at the
expense of less information about the scene.

3.3. Varying the focal surface used for au-
tostereoscopic surface generation

The implementation also allows for the user to
change the focal surface used for the generation of
the autostereoscopic image, which significantly impacts
each sub-image in the autostereoscopic image. When
the focal surface is set in front of the surface object,
the display of the object in each sub-image is flipped
vertically since rays from cameras at lower values on
the y-axis in the camera plane map to points at larger
values on the y-axis on the image plane than rays from
cameras higher on the y-axis. Then, as the focal surface
approaches infinity in the z-direction, each sub-image
essentially looks the same since the rays from each cam-
era approach the center of the image plane regardless of
the x and y coordinates of the focal surface due to the
dominance of z-coordinate in this situation.

3.4. Autostereoscopic Image Generation - CPU
Style

First, we implemented our autostereoscopic image
generation on the CPU. We used the given ’pumpkin’
image also used in the autostereoscopic image genera-
tion in [2]. First, we kept the focal surface constant and
varied the number of focal surface points. The result
using sparse sampling where the focal plane is a little
behind the objects and sampled at 32 X 24 is shown in
figure 2. The generation of this image using the CPU
implementation was very quick, happening in less than
.03 seconds, plenty fast for real-time generations.

Then, we sampled the focal plane at 320 X 240, the
same as the resolution of the images in the database.
The output autostereoscopic image has a resolution of
5120 X 3840 pixels, which is far too large to fully dis-
play. A small portion of the output image is shown in
figure 3, and a zoomed-out display of the output im-
age is shown in figure 4. Interestingly, the zoomed-out
autostereoscopic display looks the same as the view of
the scene from a single camera looking at the center of
the focal plane. The generation of this densely-sampled
autostereoscopic image takes about 2.5 seconds to gen-
erate on the CPU, which may not be fast enough for
real-time applications.

Next, we experimented with changing the focal

plane of the autostereoscopic image. The result using
sparse sampling of 32 X 24 with the focal plane in front
of the object is shown in figure 5. Note that the ob-
ject in each sub-image appears to be flipped vertically
as described in section 3.3. Finally, a portion of the re-
sult using dense sampling at 320 X 240 with the focal
plane way behind the object is shown in figure 6. Note
that each sub-image appears to be a low-resolution dis-
play of the entire image, as the rays from each camera
approach the center of the image plane at each focal sur-
face point as described in section 3.3.

Figure 2: Generated autostereoscopic image using
sparse sampling of the focal plane.

Figure 3: Portion of the generated autostereoscopic
image using dense sampling of the focal plane.

3.5. Autostereoscopic Image Generation -
CUDA Style

Next, we implemented autostereoscopic image gen-
eration on the GPU using the Compute Unified Device



Figure 4: Zoomed-out display of the generated au-
tostereoscopic image using dense sampling of the
focal plane.

Figure 5: Generated autostereoscopic image using
sparse sampling of the focal plane with the focal
plane in front of the objects.

Architecture (CUDA) from nVidia in order to try and
speed up the generation of the output images without
losing accuracy. We will not go into a detailed descrip-
tion of CUDA here; the online documentation provided
by nVidia provides a good introduction for the inter-
ested reader [1]. In our implementation, each of the
cameras in the 16 X 16 array are mapped to a thread on
the parallel architecture, and each of the points sampled
are mapped to a block within the grid of thread blocks
that execute in parallel. The implementation is bench-
marked on two systems, a laptop with a Intel Core 2
Duo CPU running at 2.00 GHz and a nVidia 8600M GT
GPU with four multiprocessors, and a desktop with a
Intel Quad-core Xeon CPU running at 2.00GHz and a
nVidia Tesla C870 GPU with 16 multiprocessors.

The resulting autostereoscopic images are the same
in both the CPU and CUDA implementations. We will
note that we were unable to produce autostereoscopic
images at the sampling level of 320 X 240 on the GPU

Figure 6: Portion of the generated autostereoscopic
image using dense sampling of the focal plane with
the focal plane way behind of the object.

due to limitations of the CUDA architecture, but we
were able to produce images at a sampling resolution of
up to 306 X 210 on both implementations. We bench-
marked our implementations using the ’pumpkin’ im-
age on the CPU and CUDA; the results for each system
are shown in figures 7 and 8. The number of output
image points represented on the x-axis of the graphs in
the figures correspond to the total number of points ren-
dered on the focal plane in the output autostereoscopic
image; the number of output points using sparse sam-
pling of 32 X 24 corresponds to a total of 768 output
points. The results displayed in the figures show that
the CUDA implementation is faster than the CPU im-
plementation on both systems for both sparse sampling
and dense sampling of the focal plane.

In addition, the use of CUDA for the calculations of
the autostereoscopic light field image allows for more
efficient visualization of the output since the output im-
age data does not need to be transferred from the main
memory to the GPU for display via OpenGL, the data
can remain on the GPU due to the interoperability ca-
pabilities between CUDA and OpenGL.

4. Conclusions

In this paper, we explore the possibility of a real-
time autostereoscopic image generation system using
the GPU. Our results show that the generation of the
desired image is faster on the GPU than in the anal-
ogous sequential CPU implementation, validating our
hypothesis that the parallel architecture of the GPU can
be taken advantage of for such a system.



Figure 7: Running time of autostereoscopic image
generation on the laptop system described in sec-
tion 3.5 using the CPU and CUDA implementations.

Figure 8: Running time of autostereoscopic image
generation on the desktop system described in sec-
tion 3.5 using the CPU and CUDA implementations.

References

[1] NVIDIA CUDA Programming Guide: Version 2.2.
NVIDIA Corporation, April 2009.

[2] A. Isaksen, L. McMillan, and S. J. Gortler. Dynami-
cally reparameterized light fields. In SIGGRAPH ’00:
Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 297–
306, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.


