
Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Accelerating Financial Applications on the GPU

Scott Grauer-Gray William Killian
Robert Searles John Cavazos

Department of Computer and Information Science
University of Delaware

Sixth Workshop on General Purpose Processing Using GPUs



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Outline
1 Introduction

QuantLib and Financial Applications
Directive-Based Acceleration

2 Experiment Setup
Source Code Modifications
Compilation
Execution Environment

3 Application Results
NVIDIA K20 Results

4 Auto-Tuning
Framework
Results
Alternate Architectures

5 Conclusion
Future Work
Final Notes



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Outline
1 Introduction

QuantLib and Financial Applications
Directive-Based Acceleration

2 Experiment Setup
Source Code Modifications
Compilation
Execution Environment

3 Application Results
NVIDIA K20 Results

4 Auto-Tuning
Framework
Results
Alternate Architectures

5 Conclusion
Future Work
Final Notes



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

QuantLib and Financial Applications

QuantLib

Open-Source library for Quantitative Finance

Written in C++

Contains various financial models andmethods

Models: yield curves, interest rates, volatility

Methods: analytic formulae, finite difference, monte-carlo

Financial applications optimized are particular code paths in
QuantLib



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

QuantLib and Financial Applications

Financial Applications

Four financial applications selected for parallelization

Application Description Precision

Black-Scholes Option pricing using Black-Scholes-Merton
pricing

Single

Monte-Carlo Pricing of a single option using QMB (Sobol)
Monte-Carlo method

Single

Bonds Bond pricing using a fixed-rate bondwith a flat
forward-curve

Double

Repo Repurchase agreement pricing of securities
which are sold and bought back later

Double

Each application is data-parallelized
Algorithm for each application is parallelized where possible



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Directive-Based Acceleration

Overview on Directive-Based Acceleration

Syntax comparable
to OpenMP

Annotates what code should
run on an accelerator

Focuses on highlighting
parallelism of code

Preserves serial
implementation of code

Simplifies interaction
between scientists
and programmers



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Directive-Based Acceleration

Directive-Based Programming Languages

OpenACC
Joint collaboration between CAPS Entreprise, CRAY, PGI, and
NVIDIA
Directive syntax near identical to OpenMP with added data
clauses
Introduces a kernel directive that drives compiler-assisted
parallelization

HMPP
Originally developed by CAPS Entreprise
Fundemental execution unit is a codelet
Provides fine-grain control for optimizations



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Outline
1 Introduction

QuantLib and Financial Applications
Directive-Based Acceleration

2 Experiment Setup
Source Code Modifications
Compilation
Execution Environment

3 Application Results
NVIDIA K20 Results

4 Auto-Tuning
Framework
Results
Alternate Architectures

5 Conclusion
Future Work
Final Notes



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Source Code Modifications

Source Code Modifications

Code flatten QuantLib C++⇒ Sequential C code

Implementations derived from Sequential C code

Argument passing — Structure of Arrays

Verification: Compared all results to original QuantLib code
paths. All results were within 3 degrees of precision (10−3)



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Source Code Modifications

Code Flattening

// C++ code:
struct C {
int x;
void addFour() {
x += 4;

}
};
struct B {
C myObj;
virtual void foo() = 0;

};
struct A : public B {
virtual void foo() {
myObj.addFour();

}
};
A inst;
inst.foo();

// flattened code:

// flattened code:
int inst_x;
inst_x += 4;

// Alternative flattening:
int addFour (int x) {
return x + 4;

}

int inst_x;
inst_x = addFour (inst_x);



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Compilation

Compilation

Host code compiled with GCC 4.7.0

-O2 flag used for serial

-O3 -march=native flag used for OpenMP

OpenACC and HMPP compiled with HMPPWorkbench 3.2.1

CUDA compiled with CUDA 5 Toolkit

OpenCL used NVIDIA driver version 304.54



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Compilation

Compile Workflow Using HMPPWorkbench

HMPPWorkbench used for HMPP and OpenACC code compilation
Target CUDA and OpenCL code generation



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Execution Environment

Execution Environment

CPU—Dual Xeon X5530 (Quad-Core @ 2.40GHz) with 24GB
DDR3-1066 ECC RAM

GPU—NVIDIA K20c (2496 CUDA Cores @ 706MHz) with 5GB GDDR5
2.6GHz ECC RAM

NOTE: Also ran all experiments on NVIDIA C2050

Auto-Tuning Targets:

NVIDIA GPU Architecture CUDA Cores
NVIDIA C1060 Tesla 240
NVIDIA C2050 Fermi 448
NVIDIA GTX 670 Kepler GK104 1344
NVIDIA K20c Kepler GK110 2496



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Outline
1 Introduction

QuantLib and Financial Applications
Directive-Based Acceleration

2 Experiment Setup
Source Code Modifications
Compilation
Execution Environment

3 Application Results
NVIDIA K20 Results

4 Auto-Tuning
Framework
Results
Alternate Architectures

5 Conclusion
Future Work
Final Notes



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

NVIDIA K20 Results

Black-Scholes — K20 Results

CUDA Results OpenCL Results

10
0
20
0
50
0
10
00
20
00
50
00
10
00
0
20
00
0
50
00
0

10
00
00

20
00
00

50
00
00

10
00
00
0

20
00
00
0

50
00
00
0

100

101

102

Number of Options

Sp
ee
du

p
ov

er
Se

qu
en

tia
l

OpenACC HMPP CUDA OpenMP

10
0
20
0
50
0
10
00
20
00
50
00
10
00
0
20
00
0
50
00
0

10
00
00

20
00
00

50
00
00

10
00
00
0

20
00
00
0

50
00
00
0

100

101

102

Number of Options

Sp
ee
du

p
ov

er
Se

qu
en

tia
l

OpenACC HMPP OpenCL OpenMP



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

NVIDIA K20 Results

Black-Scholes — K20 Results

CUDA outperformed OpenCL on NVIDIA K20
461x speedup for CUDA
446x speedup for OpenCL

HMPP and OpenACC targeting the same language achieved
near-identical speedup
HMPP and OpenACC targeting OpenCL was faster than
targeting CUDA

369x speedup for CUDA
380x speedup for OpenCL



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

NVIDIA K20 Results

Monte-Carlo — K20 Results

CUDA Results OpenCL Results

10
0

20
0

50
0
10
00

20
00

50
00
10
00
0
20
00
0
50
00
0

10
00
00

20
00
00

50
00
00

101

102

103

Number of Samples

Sp
ee

du
p
ov

er
Se

qu
en

tia
l

OpenACC HMPP CUDA OpenMP

10
0

20
0

50
0
10
00

20
00

50
00
10
00
0
20
00
0
50
00
0

10
00
00

20
00
00

50
00
00

101

102

103

Number of Samples
Sp

ee
du

p
ov

er
Se

qu
en

tia
l

OpenACC HMPP OpenCL OpenMP

Random Number Generation:
C/OpenMP— rand
CUDA— cuRand
HMPP/OpenACC/OpenCL —Mersenne Twister

Dropoff in speedup for CUDA⇒ cache misses



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

NVIDIA K20 Results

Monte-Carlo — K20 Results

Manual CUDA outperformedmanual OpenCL
Up to 1006x vs 180x

HMPP and OpenACC performed similarly
Targeting CUDA was faster than targeting OpenCL

Up to 162x vs up to 130x



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

NVIDIA K20 Results

Bonds and Repo — K20 Results

Bonds (CUDA) Repo (CUDA)

10
0
20
0
50
0
10
00
20
00
50
00
10
00
0
20
00
0
50
00
0

10
00
00

20
00
00

50
00
00

10
00
00
00

20

40

60

80

Number of Bonds

Sp
ee

du
p
ov

er
Se

qu
en

tia
l

OpenACC HMPP CUDA OpenMP

10
0
20
0
50
0
10
00
20
00
50
00
10
00
0
20
00
0
50
00
0

10
00
00

20
00
00

50
00
00

10
00
00
0

20
00
00
00

20

40

60

80

100

Number of Repos

Sp
ee

du
p
ov

er
Se

qu
en

tia
l

OpenACC HMPP CUDA OpenMP

Problem: Generating OpenCL code from HMPP and OpenACC



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

NVIDIA K20 Results

Bonds and Repo — K20 Results

Bonds: Up to 87.9x speedup
Repo: Up to 94x speedup
HMPP and OpenACC versions produced near-identical
execution time
HMPP and OpenACC versions ran within 2% execution time as
manually-written CUDA
Speedup flattened as problem size increased beyond 100,000
Bonds and 2,000,000 Repos



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Outline
1 Introduction

QuantLib and Financial Applications
Directive-Based Acceleration

2 Experiment Setup
Source Code Modifications
Compilation
Execution Environment

3 Application Results
NVIDIA K20 Results

4 Auto-Tuning
Framework
Results
Alternate Architectures

5 Conclusion
Future Work
Final Notes



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Framework

Auto-Tuning Framework

Goal: achieve maximum speedup by applying a set
optimizations (while preserving accuracy)
Collection of python scripts initially provided by CAPS
Entreprise
Injects code optimizations into annotated source code

blocksize— thread block dimensions on GPU
unroll— loop unroll factor; can be used with
contiguous or split
tile— loop tiling factor
remainder/guarded— used for unrolling to specify
remainder loop or conditional check, respectively

Framework generates a set of new HMPP source files



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Framework

Annotated Source Code Sample

%(blocksizePragma)
%(unrollTilePragma_iLoop)
%(parallelNoParallelPragma_iLoop)
for (i = 0; i < NI; ++i) {
%(unrollTilePragma_jLoop)
%(parallelNoParallelPragma_jLoop)
for (j = 0; j < NJ; ++j) {
c[i][j] *= p_beta;
%(unrollTilePragma_kLoop)
%(parallelNoParallelPragma_kLoop)
for (k = 0; k < NK; ++k) {
temp = p_alpha * a[i][k] * b[k][j];
c[i][j] += temp;

}
}

}

unrollTilePragma— specify loop unroll/tile factor with options
parallelNoParallelPragma— specify whether to parallelize or not
blockSizePragma— use determined block size



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Results

Auto-Tuning Results

Application Thread Block Loop Optimizations Speedup
(Default)

Black-Scholes
5,000,000 Options

32 X 4 No tiling / loop unrolling
369x
(369x)

Monte-Carlo
400,000 Samples

32 X 2

Tile ‘main’ loop w/ factor 3
and ‘path’ loop w/ factor 4,
both with ‘contiguous’ and
‘guarded’ options

265x
(152x)

Bonds
1,000,000 Bonds

32 X 2 No tiling / loop unrolling
89.7x
(87.1x)

Repo
1,000,000 Repos

32 X 2
Unroll inner ‘cash flows’
loopw/ factor 2 using ‘split’
and ‘guarded’ options

97.6x
(91.2x)



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Alternate Architectures

Running Optimized Code on Alternate Architectures

Run the auto-tuned code on various architectures
Compare speedup of best auto-tuned code of one architecture
on other architecture
All code paths executed on C1060, C2050, and GTX670

Run on C2050 Run on GTX 670

B-S M-C B R
0

1

2

Sp
ee
du

p
ov

er
de

fa
ul
t Best K20 Best C2050

B-S M-C B R
0

1

2

Sp
ee
du

p
ov

er
de

fa
ul
t Best K20 Best GTX670



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Outline
1 Introduction

QuantLib and Financial Applications
Directive-Based Acceleration

2 Experiment Setup
Source Code Modifications
Compilation
Execution Environment

3 Application Results
NVIDIA K20 Results

4 Auto-Tuning
Framework
Results
Alternate Architectures

5 Conclusion
Future Work
Final Notes



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Future Work

Future Work

Target different architectures

AMD GPUs

Intel Xeon Phi

Heterogeneous systems

Parallelize more code paths in QuantLib

Parallelize additional financial applications outside of
QuantLib



Introduction Experiment Setup Application Results Auto-Tuning Conclusion

Final Notes

Final Notes

Successful parallelization of four QuantLib code paths
Achieve up to a 1000x speedup by targeting CUDAmanually
Achieve up to a 370x speedup by using HMPP and OpenACC
Achieve up to a 74% speedup when auto-tuning
Source code for codes in this presentation will be available at
www.sourceforge.net/projects/quantlib-gpu/

Funding Acknowledgement:
This work was funded in part by JP Morgan Chase as part of the
Global Enterprise Technology (GET) Collaboration

www.sourceforge.net/projects/quantlib-gpu/

	Introduction
	QuantLib and Financial Applications
	Directive-Based Acceleration

	Experiment Setup
	Source Code Modifications
	Compilation
	Execution Environment

	Application Results
	NVIDIA K20 Results

	Auto-Tuning
	Framework
	Results
	Alternate Architectures

	Conclusion
	Future Work
	Final Notes


