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ABSTRACT

This work presents optimizations to belief propagation for stereo
processing on the GPU and CPU to significantly speed up the im-
plementation without hurting the output disparity map accuracy.
The optimizations speed up runtime by over 2x in some cases over
an initial parallel implementation and are shown to work across
a variety of stereo sets across multiple NVIDIA GPU and CPU ar-
chitectures. In addition, this work introduces a parallel CPU im-
plementation using OpenMP and SIMD instructions that gives a
significant speedup over the initial non-parallel code and which is
further improved using the presented optimizations.

1 INTRODUCTION

The retrieval of an accurate disparity map from a set of stereo im-
ages is a known computer vision problem. Many methods have
been proposed, implemented, and evaluated, often resulting in trade-
offs involving speed and accuracy, where the faster methods gen-
erally result in a less accurate disparity map. In particular, local
methods that only consider the current or a few neighboring pix-
els when retrieving disparity are generally faster but less accurate
than global methods that take the entire images into account when
processing.

One global method that is known to produce relatively accu-
rate disparity maps is belief propagation. Specifically, this method
involves the use of Markov random field (MRF) models to gener-
ate an NP-hard energy minimization problem for retrieving the
disparity at every pixel, and then using belief propagation (BP) to
generate an approximate a solutionwith reasonable computational
cost. Sun et. al. [9] introduced this method for stereo matching in
2003. In 2004, Felzenwalb and Huttenlocher [2] introduced three
improvements to improve the runtime of belief propagation for
stereo matching without changing accuracy. This work is accom-
panied by C code1 that implements these improvements and runs
on a single thread on the CPU.

During the 2000s, GPUs became more powerful and started be-
ing used for general purpose computing on GPUs (GPGPU), as the
GPU can generally accelerate applications where processing can
be run in parallel on many threads. Belief propagation for stereo
matching is an obvious candidate for GPU acceleration since it in-
volves many independent operations on at least half the image pix-
els in every major step.

In separate works presented in 2006, Brunton et. al. [1] and Yang
et. al. [10] ported belief propagation to the GPU using a graphics
API with vector and fragment shaders, as specific GPGPU APIs
was not yet released at the time of the work. After the release of
CUDA for GPGPU in 2007, Grauer-Gray et. al. [4] ported belief
propagation for stereo matching to the CUDA environment and
presented work in 2008 that showed a significant speedup com-
pared to Felzenwalb’s CPU implementation. In 2010, Grauer-Gray

1Code available at http://cs.brown.edu/people/pfelzens/bp

and Cavazos [3] presented work showing further optimizations to
improve the GPU implementation runtime, specifically optimizing
a CUDA kernel in the implementation to use shared memory and
registers to store frequently-accessed data rather than slower local
memory.

2 BELIEF PROPAGATION FOR STEREO
MATCHING

As described by Grauer-Gray and Cavazos [3], belief propagation
for stereo matching as implemented with the speedups developed
by Felzenwalb consists of the following steps:

(1) Calculate the data cost for each pixel at each disparity in
the disparity space at the bottom level of the computation
hierarchy.

(2) Iteratively calculate the data costs at each succeeding level
of the hierarchy.

(3) For each level in the hierarchy (starting from top):
(a) For each pixel in the current ‘checkerboard’ set, compute

the message to send to its four-connected neighbors in
the alternate set using the current message values and
data cost. Repeat for i iterations, alternating between the
two checkerboard sets.

(b) If not at the bottom level of the hierarchy, copy the mes-
sage values at each pixel to a 2 X 2 block of corresponding
pixels in the succeeding level of the hierarchy.

(4) Retrieve the disparity estimate at each pixel using the cur-
rent message values and data costs, with the output corre-
sponding to the disparity that minimizes the sum of the cur-
rent message values and data cost at the pixel. The disparity
estimates across every pixel represent the output disparity
map.

The previous work in accelerated belief propagation showed
that each step can be parallelized on the GPU, with the result be-
ing a significant speedup over the CPU implementation with no
decrease of accuracy in the resulting disparity map compared to
the ground truth.

Stereo Set Dimensions Disparities CPU time Init CUDA time
Tsukuba 388 X 284 16 107.0 5.9
Venus 434 X 383 21 305.1 9.4
Barn1 432 X 381 32 472.5 11.4
Cones (q) 450 X 375 64 1008.1 27.7
Cones (h) 900 X 750 128 8472.7 223.5

Table 1: Stereo sets benchmarked in this work with the CPU

implementation runtime (in ms) and initial CUDA imple-

mentation runtime (in ms) on V100.

http://cs.brown.edu/people/pfelzens/bp


Figure 1: Reference images from stereo sets benchmarked

in this work. Images shown are from (clockwise from upper

left) Tsukuba, Venus, Barn1, and Cones stereo sets.

Figure 2: Ground truth Tsukuba stereo set disparity map

(left) and Tsukuba stereo set disparity map generated with

initial CUDA implementation (right).

3 STEREO SETS

Five stereo sets from the Middlebury Stereo Datasets ([7] and [8])
are benchmarked in the initial and optimized implementations in
this work. Specifically, the stereo sets used are the Tsukuba, Venus,
Barn1, and Cones (quarter-sized and half-sized). These stereo sets
contain a variety of image dimensions and possible disparity value
counts, ranging from the 388 X 284 Tsukuba stereo set with 16
possible disparity values to the 900 X 750 cones (half-sized) dataset
with 128 possible disparity values. The reference image from each
stereo set is in Figure 1 and details for each stereo set is in Table 1.

4 INITIAL CUDA IMPLEMENTATION

The initial CUDA implementation is based on the implementation
described by Grauer-Gray, et. al. in [4], using the code provided
with the paper and updating it to work with the current CUDA ver-
sion. However, the computed disparity maps from this CUDA code

did not exactly match the disparity maps computed using Felzen-
walb’s CPU implementation due tominor differences in processing
(the accuracy as compared to the ground truth wasn’t affected). For
this work, the CUDA code was tweaked to exactly match the CPU
processing at every pixel and output the exact same disparity map
as the CPU implementation. Both the CPU implementation and
this initial CUDA implementation use the 32-bit float data type to
store all the data cost and message-passing data and for compu-
tations on this data. The CPU and initial CUDA implementation
runtimes on the Tesla V100 GPU are shown in Table 1 and show a
large speedup using the CUDA implementation.

One notable optimization in this initial implementation is the
data cost/message value array indexing. The data cost andmessage
value arrays contain data for every (x, y) pixel at every possible dis-
parity, but are implemented as flat, 1D arrays in global memory on
the GPU and then indexed with a unique location for each x, y,
and disparity combination. A naive method of indexing would be
to make the y and x indices be the first two dimensions as is typical
with pixel indexing within an image, and then add the current dis-
parity as the third dimension, resulting in the following formula
(where num_disp = number of values in disparity range and disp
= current disparity):

index = y ∗width ∗ num_disp + x ∗ num_disp + disp

However, this indexing is not ideal for memory access coales-
cence on the GPU where pixels with the same y index and neigh-
boring x indices are processed simultaneously in the same warp.
Instead, this implementation uses an indexing method where the
y index is first dimension, the current disparity is the second di-
mension, and the x index is the third dimension, which results in
the following formula:

index = y ∗width ∗ num_disp +width ∗ disp + x

This indexing makes it so the data cost and message value data
arrays are indexed in a way that the memory access is coalesced
when reading from and writing to the global memory on the GPU.
The naive method of indexing was implemented and compared to
this optimized method; the results are shown in Table 2 and show
a significant speedup using optimized indexing across GPUs and
stereo sets.

In Grauer-Gray and Cavazo’s previous optimization work [3], it
is observed that the kernel corresponding the step 3a of the belief
propagation algorithm in Section 2 takes almost 70% of the total
runtime, so this ‘dominant’ kernel is the kernel to initially focus
on and evaluate when optimizing the kernels.

GPU Tsukuba Venus Barn1 Cones (q) Cones (h)
V100 1.5 1.8 2.2 2.1 2.5
K80 2.3 3.0 3.9 3.2 2.9
RTX 2060 2.3 2.6 3.2 2.6 2.1
Jetson TX1 2.1 3.2 2.7 2.0 1.8

Table 2: Speedup for each stereo set on each tested GPU us-

ing optimized data cost/message value array indexing com-

pared to naive indexing.
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5 TEST SETUP

In this work, all the stereo sets are processed using 5 levels in
the computation hierarchy with 7 iterations per level, the relative
weight of the data cost compared to discontinuity cost is set to 0.1,
and no smoothing is applied to the images (smoothing sigma set
to 0.0). The truncated linear model is used for the data and dis-
continuity costs, with a maximum value of 15.0 for the data cost
and the maximum discontinuity cost set to the number of possible
disparity levels for the stereo set divided by 7.5.

The GPUs used in this work are the Tesla V100 (Volta architec-
ture), K80 (Kepler Architecture), RTX 2060 (Turing architecture),
and the GPU on the NVIDIA Jetson TX1 Developer Kit (Maxwell
architecture). The RTX 2060 and Jetson TX1 results are obtained us-
ing a local computer/developer kit, while Amazon Cloud is used to
run the implementations on the V100 and K80. Ubuntu 18.04 with
CUDA 10.1 is used in all tests except for the Jetson TX1, which uses
Ubuntu 16.04 with CUDA 9.0. The CPU results are obtained locally
on a desktop computer with a i7-7700K CPU and 32 GB RAM (with
the exception of the Jetson CPU results, which are obtained using
the Jetson TX1 Developer Kit CPU). The GPU runtimes include the
time to transfer the input stereo set to the GPU and to transfer the
output disparity map back to the host. All codes are compiled and
linked using the GCC compiler with the -O3 optimization level en-
abled.

The ground truth Tsukuba stereo set disparitymap and disparity
map generated with the initial CUDA implementation are shown
in Figure 2. It is worth noting that this output disparity map dif-
fers from the output Tsukuba stereo set disparity map presented
in the initial CUDA implementation work [4]; the primary reason
is because no smoothing is applied to the stereo set images in this
work while the smoothing sigma was set to 1.0 in the initial CUDA
implementation work.

6 CUDA IMPLEMENTATION OPTIMIZATIONS

6.1 Memory Management

6.1.1 Description. The initial implementation contains using
cudaMalloc() to allocate GPU global memory space for two sets of
four ’message-passing’ arrays containing (level_width / 2) * (level_
height) * (num_disparities) data values for each belief propagation
level, and then using cudaFree() to free the memory when done
with processing at that level. Five levels are used for the processing
of each stereo set, so this results in 40 cudaMalloc() and cudaFree()
instructions in the implementation. Runtime analysis found that
these calls add a non-trivial amount of time to the overall CUDA
implementation runtime.

Tominimize the number of cudaMalloc()/cudaFree() instructions,
the implementation is changed to allocate a single large array in
the GPU global memory that contains enough space for the data
costs as well as the message-passing arrays for every pixel at every
disparity at every level. Then a unique offset from the start of this
array is computed to mark the start of each individual data cost
and message passing array in the implementation at each level.
When five belief propagation levels are used, this decreases the
number of cudaMalloc()/cudaFree() instructions for the data cost
and message-passing arrays from 40 to 1.

GPU Tsukuba Venus Barn1 Cones (q) Cones (h)
V100 2.9 2.9 2.9 1.6 1.1
K80 1.9 1.9 1.9 1.5 1.2
RTX 2060 1.7 1.4 1.2 1.1 0.97
Jetson TX1 1.3 1.05 1.06 1.03 1.02

Table 3: Speedup for each stereo set on each tested GPU us-

ing memory management optimization as compared to ini-

tial CUDA implementation.

6.1.2 Results. The memory management change to minimize
the number of cudaMalloc()/cudaFree() call resulted in a significant
speedup to the implementation on most of the tested stereo sets,
with the results on each GPU shown in Table 3. Specifically, the
speedup ranged from 1.1 times compared to the initial CUDA im-
plementation on the larger 750 X 900 Cones (half-size) stereo set to
over 2 times on the smaller Barn1, Venus, and Tsukuba stereo sets.
On the larger stereo sets with a larger disparity range, the GPU
memory management time takes a smaller portion of the overall
implementation runtime compared to the kernel computation and
other processing not affected by this optimization, so this result is
expected.

Interestingly, there was a case on the largest tested stereo set
(half-sized cones) on the RTX 2060 where a slight slowdown of
about 3% was observed with this change, and the analysis found
that the slowdown was potentially caused by the time to allocate
the single large array. For this particular stereo set on the RTX 2060,
the single allocation of the large array actually tookmore time than
the the multiple allocations/freeing of the smaller arrays.

6.2 16-Bit Half Data Type

6.2.1 Description. The CUDA Toolkit began supporting the 16-
bit half datatype in July 2015 with CUDA 7.5. Specifically, CUDA
7.5 added support for the half and half2 datatypes as will as intrin-
sics supporting them. In addition, the Tegra X1/2, Tesla P100, and
all Volta and Turing GPUs have hardware support for 2x speedup
on half2 data operations.

The first way the implementation may benefit from using 16-bit
half data is that it halves the number of bytes of data loaded and
stored to global memory in each kernel run compared to using
32-bit floats. A switch to 16-bit data may result in a speedup if
the current implementation is bottlenecked by global memory load
and/or store operations.

The second way the implementation may benefit from 16-bit
data is by modifying the kernel processing to take advantage of the
2x speedup on half2 data operations where a single half2 instruc-
tion can process two values of packed 16-data data. This change
should reduce the overall number of instructions across all the ker-
nel threads since each half2 operation on two data values replaces
a separate half or float operation for each of the individual values.

To test the first possible benefit, the data and message passing
arrays were changed from 32-bit float storage to 16-bit half storage,
causing the load, store, and other operations on the array data to
be run using half data instead of float data. Then, the ‘dominant’
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kernel (see Section 4) as well as a couple other kernels were mod-
ified to support half2 data operations to test the second possible
benefit.

GPU Tsukuba Venus Barn1 Cones (q) Cones (h)
V100 1.1 1.3 1.3 1.9 1.4
RTX 2060 1.4 1.7 1.6 1.7 1.8
Jetson TX1 1.05 1.6 1.06 1.6 1.7

Table 4: Speedup for each stereo set on each supported GPU

using 16-bit half data as compared to initial CUDA imple-

mentation using 32-bit float data. No results for K80 GPU

since it does not support 16-bit half data.

6.2.2 Results. The change from using 32-bit float data to using
16-bit half data did result in a significant speedup in most of the
stereo sets on each GPU, with the speedup ranging from a low of
1.05 to a high of 1.9 times over using 32-bit float data. The results
for each stereo set on each GPU are shown in Table 4. The test
setup used for these results were with the memory management
optimization applied for both data types.

Investigation of the ‘dominant’ kernel in each implementation
using the NVIDIANsight Compute tool showed that memory load/
store instructions are a bottleneck when processing the kernel and
that using 16-bit half data reduces this bottleneck. Specifically, when
processing the Tsukuba stereo set, theNsight Compute tool showed
the same number of global load and store instructions when 16-bit
data compared to 32-bit data, but the number of texture to L2 cache
requests, L2 to texture returns, texture to SM (streaming multipro-
cessor) returns, and bytes loaded/stored were all halved when us-
ing 16-bit data compared to 32-bit data. In addition, the compute
SM utilization increases from 11.5% to 30.9% when going from 32-
bit to 16-bit data while thememory utilization remains around 80%,
making it clear that memory use is a bottleneck. For the Tsukuba
stereo set, using 16-bit data eased the memory use bottleneck and
significantly decreased the ‘dominant’ kernel runtime.

Interestingly, themagnitude of speedup did vary across the stereo
sets and GPUs with no clear pattern relating the speedup to stereo
set dimensions and/or number of possible disparity values. Investi-
gation on the ‘dominant’ kernel found that using 16-bit half storage
results more registers used, more local memory use (when there is
register spillover), and also more overall instructions, all changes
that could cause the kernel to run slower. While this optimiza-
tion did show speedup in every test, these factors may cause the
speedup to be less than initially expected.

The tests of the second possible optimization, half2 operations,
found that using half2 operations did not significantly improve
runtime over using 16-bit half data with the default operations in
most of the stereo sets and could cause a slowdown of over 25%
in some cases. Evaluation of the ‘dominant’ kernel when process-
ing the Tsukuba stereo set found that using half2 operations did
reduce the number of overall instructions, but it also reduced the
streamingmultiprocessor utilization compared to using the default
half operations. This indicates that memory load / store operations
are the bottleneck so reducing the instructions does not help the
runtime. In addition, the changes required to support the half2 data

type made loading the message data from neighboring pixels more
complicated; this may be why the runtime increased a little com-
pared to using the default 16-bit data operations. The main excep-
tion to this result is the half-sized cones stereo set with a 128-value
disparity range where there is a speedup of over 7.5% on the V100,
RTX 2060, and Jetson TX1 GPUs when using half2 operations com-
pared to simply using 16-bit half data; in this case the memory
load / store is likely less of a relative bottleneck due to the greater
amount of computation.

It is worth noting that the change to 16-bit half data did cause
the output disparitymap to differ a little when compared to the out-
put disparity map using 32-bit float data, but the accuracy did not
significantly change when compared to the ground truth disparity
map.

6.3 Data Alignment

6.3.1 Description. Another possible optimization is data align-
ment, specifically ensuring that the array data corresponding to
the start of each row (where x=0) of the stereo set processing is
aligned to a specified n-byte boundary. In the first generation of
CUDA devices with compute capability of 1.0, global memory ac-
cesses that were not aligned to the transaction size (32, 64, or 128-
bytes) were very costly and caused many additional transactions
with global memory [5]. The penalty is much lower in current
CUDA devices, but a performance penalty is still possible if the
data is misaligned. For this optimization test, the start of each data
array is aligned to a 64-byte boundary and each row at each com-
putation level is padded to a multiple of 16, making the start of
each row 64-byte alignedwhen using float data and 32-byte aligned
when using 16-bit half data.

GPU Tsukuba Venus Barn1 Cones (q) Cones (h)
V100 0.99 / 0.99 1.1 / 1.08 1.01 / 1.00 1.2 / 1.05 1.2 / 1.2
K80 1.1 / N/A 1.1 / N/A 1.07 / N/A 1.06 / N/A 1.1 / N/A
2060 0.99 / 1.0 1.03 / 1.01 1.0 / 1.01 1.06 / 0.93 1.05 / 1.04
TX1 1.02 / 0.82 1.2 / 0.92 1.03 / 1.07 1.03 / 1.01 1.09 / 1.03

Table 5: Speedup for each stereo set on each tested GPU us-

ing data alignment when using 32-bit float data/16-bit half

data (only float data on K80 since it does not support 16-bit

half data).

6.3.2 Results. The data alignment optimization test results are
in Table 5 and show that this optimization usually results in a
speedup, with the tested speedup topping out at around 20%. The
results certainly show that making the data aligned in this man-
ner should be looked at when trying to make the implementation
run as fast as possible on an NVIDIA GPU. However, there were a
few cases, particuarly when using 16-bit data on the smaller stereo
sets, where this optimization actually caused a slowdown, so this
optimization should not be blindly applied to every scenerio.

6.4 CUDA Optimizations Results

The optimized CUDA implementation results on the Tesla V100
and Jetson TX1 are shown for each stereo set in Tables 6 and 7, with
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Stereo Set CPU time Init CUDA time Opt. CUDA Time
Tsukuba 107.0 5.9 1.8
Venus 305.1 9.4 2.4
Barn1 472.5 11.4 3.3
Cones (q) 1008.1 27.7 8.2
Cones (h) 8472.7 223.5 131.1

Table 6: V100 Results: Runtime (in ms) of the CPU (using

i7-7700K), initial CUDA, and optimized CUDA implementa-

tions on Tesla V100 GPU for each stereo set.

Stereo Set Jetson CPU time Init CUDA time Opt. CUDA Time
Tsukuba 545.6 75.0 54.5
Venus 1696.4 107.8 74.6
Barn1 2724.3 203.5 191.2
Cones (q) 4491.4 720.8 454.5
Cones (h) 36153.3 8969.5 5635.0

Table 7: Jetson TX1 Results: Runtime (in ms) of the Jetson

CPU, initial CUDA, and optimized CUDA implementations

on the Jetson TX1 for each stereo set. CPU time is the run-

time on the ARM CPU on the Jetson TX1.

the optimized CUDA implementation including the memory man-
agement optimization, the 16-bit half data type optimization (but
not using half2 operations), and using the better result of apply-
ing/not applying the data alignment optimization. These results as
well as the intermediate results in the previous sections show that
the presentedmemorymanagement, 16-bit half data type, and data
alignment optimizations can be effective to improve the runtime of
CUDA belief propagation for stereo processing without affecting
accuracy, and these optimizations generally work across multiple
stereo sets and GPU architectures.

However, the effect of the optimizations can differ depending
on the stereo set and GPU architecture, and there can be trade-offs
that can potentially make each presented optimization contribute
to a slowdown, so the effect of these optimizations should be tested
for any desired use case before a wide release.

7 OPTIMIZING IMPLEMENTATION ON CPU

The naive, initial, and current optimized CUDA implementations
are all significantly faster than the initial CPU implementation.
However, that is not a fair comparison between the CPU and GPU,
since the initial CPU code is an unoptimized single-thread imple-
mentation while the CUDA implementation is a parallel implemen-
tation that usesmanyGPU cores. For example, Lee et. al. [6] looked
at GPU codes that were claimed to be 10x-1000x faster on the GPU
compared to the CPU and found that when the CPU implementa-
tions are optimized, the average GPU speedup dropped to around
2.5x. For a fair comparison, the CPU belief propagation implemen-
tation was parallelized and optimized in a manner similar to the
CUDA implementation, and the implementationwas run and tested
on the 4-core / 8-thread Intel i7-7700K, the 24-core / 48-thread Intel
Xeon Platinum 8175M CPU, the AMD EPYC 7571 CPU (full CPU
has 32 cores, but 24-cores / 48-threads used in this testing), and the

4-core / 4-thread ARM CPU on the Jetson TX1 board. The tests us-
ing the i7-7700K and Jetson TX1 ARM CPU are run locally, while
Amazon Cloud is used to benchmark the implementations on the
Xeon 8175M and EPYC 7571 CPUs.

7.1 Parallel CPU Implementation

The initial CUDA implementation was used as the basis for the par-
allel CPU implementation. However, instead of using CUDA ker-
nels, each parallelizable portion was made parallel using OpenMP
pragmas, with the number of parallel threads set to the number of
simultaneous threads allowed each target CPU. Then, the code cor-
responding to the ‘dominant’ kernel as identified in Section 4 was
further optimized using the best possible SIMD instructions avail-
able for the architecture. Specifically, AVX2 instructions were used
for the i7-7700K and AMD EPYC 7571 CPUs, AVX-512 instructions
were used for Intel Xeon Platinum 8175M CPU, and NEON instruc-
tions were used for the ARM CPU on the Jetson TX1 board. One
important difference between each of these SIMD instructions is
that AVX-512 instructions process 16 32-bit float values simultane-
ously, AVX2 instructions process 8 float values simultaneously, and
NEON instructions process 4 float values simultaneously; based on
this information the largest expected speedup from SIMD instruc-
tions would be from using AVX-512 instructions. The CPU imple-
mentations are compiled and linked using the GCC compiler with
the -O3 optimization level enabled.

The average speedup of parallelizing the CPU implementation
with OpenMP only and with OpenMP + SIMD instructions across
the five benchmarked stereo set on each tested CPU is shown in
Table 8. Both parallel implementations are significantly faster than
the initial CPU implementation on every tested CPU, with the use
of SIMD instructions in the ‘dominant’ kernel generally increasing
the speedup by 1.5x-2.0x over the OpenMP only parallel implemen-
tation. As expected, the parallel implementation speedup is greater
when the target CPU hasmore cores/threads and the SIMD instruc-
tions that gave the largest speedup compared to the OpenMP-only
implementation are AVX-512 instructions. In addition, the results
relative to the i7-7700K CPU show that the implementation has the
fastest runtime on the Xeon 8175M CPU compared to the other
tested CPUs, with the average runtime 3.1x faster on the Xeon
8175M CPU compared to the i7-7700K.

CPU OpenMP OpenMP + SIMD Speedup vs. i7
i7-7700K 3.2 5.0 1.0
Xeon 8175M 11.0 20.9 3.1
EPYC 7571 12.3 18.9 2.4
Jetson TX1 2.4 3.8 0.15

Table 8: Average speedup across stereo set on each tested

CPU using parallelized implementations with OpenMP and

with OpenMP + SIMD instructions compared to the ini-

tial CPU implementation; rightmost column shows relative

speedup of OpenMP + SIMD implementation compared to

i7-7700K.
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7.2 CPU Implementation Optimizations

To try and further speed up the CPU implementation, each of the
CUDA implementation optimizations from Section 6 were applied
to the CPU implementation and tested on each CPU.

First, the memory management optimization from Section 6.1
was applied to the CPU implementation with the results shown in
Table 9. Interestingly, the result show that this change often caused
a slowdown in the CPU runtimes compared to the initial parallel
implementation and as a result is not included in the overall opti-
mized implementation on the CPU.

CPU Tsukuba Venus Barn1 Cones (q) Cones (h)
i7-7700K 0.98 0.99 0.99 0.99 0.99
Xeon 8175M 0.93 0.94 1.00 1.05 1.01
EPYC 7571 0.94 0.93 0.93 1.00 0.93
Jetson TX1 0.62 1.02 1.02 0.97 1.00

Table 9: Speedup (or slowdown) for each stereo set on each

tested CPU using memory management optimization.

Then, the optimization using 16-bit floats from Section 6.2 was
added to the CPU implementation. This optimization needed to be
implemented differently on the CPU compared to CUDA due to
the lack of arithmetic operations supporting the 16-bit float data
type on the x86/ARM CPUs in the test set; the only operations
available are for conversion between 16-bit and 32-bit floats. As
a result, 16-bit floats used to store the data cost/message passing
arrays in the implementation, but are converted to 32-bit floats for
processing and converted back to 16-bit floats when the result is
written back to memory. The CPU implementation results using
16-bit floats are shown in Table 10 and show that even with this
limitation, there is often a significant speedup using 16-bit floats in
the CPU implementation, with the speedup using this optimization
ranging from 1.03x to 1.92x.

CPU Tsukuba Venus Barn1 Cones (q) Cones (h)
i7-7700K 1.92 1.83 1.83 1.76 1.67
Xeon 8175M 1.29 1.72 1.79 1.80 1.71
EPYC 7571 1.03 1.37 1.46 1.40 1.97
Jetson TX1 1.05 1.57 1.06 1.57 1.71

Table 10: Speedup for each stereo set on each tested CPU

when using 16-bit ‘half’ data instead of 32-bit floats.

The final optimization is the data alignment optimization from
Section 6.3 where the start of each data array is aligned to 64-byte
boundary and each row at each computation level padded to a
multiple of 16. This optimization is notable with the SIMD AVX
instruction usage on x86 processors since it allows aligned load /
store AVX instructions to be used rather than unaligned instruc-
tions. The results after adding this optimization to the CPU im-
plementation are shown in Table 11 and show a speedup in most
cases, though there are a few notable exceptions where this opti-
mization causes a slowdown; the speedup using this optimization
ranges from a slowdown of 0.86x to a speedup of 1.28x.

CPU Tsukuba Venus Barn1 Cones (q) Cones (h)
7700K 1.03 / 1.05 1.01 / 1.02 1.00 / 1.00 1.2 / 0.99 1.03 / 1.01
8175M 1.25 / 1.28 1.13 / 1.09 1.20 / 1.07 1.21 / 1.11 1.07 / 1.02
7571 1.19 / 1.00 1.02 / 0.99 1.0 / 0.99 1.06 / 0.96 1.05 / 0.86
TX1 1.02 / 0.96 1.09 / 1.11 1.06 / 1.06 1.06 / 1.01 1.08 / 1.10

Table 11: Speedup for each stereo set on each tested CPU

using data alignment optimization when using 32-bit float

data/16-bit half data.

7.3 CPU Optimizations Results

The 24-core/48-thread Intel Xeon Platinum 8175M CPU gave the
fastest CPU runtime on each stereo set of the CPUs tested. The
single-threaded, initial parallel, and optimized implementation run-
times on this CPU is shown for each stereo set in Table 12, with
the optimized implementation including the 16-bit half data type
and the data alignment optimizations, but not the memory man-
agement optimization since that often caused a slowdown. As ex-
pected, the results show a significant speedup over the initial single-
threaded implementation and over the unoptimized parallel imple-
mentation.

It is interesting to compare the 8175M CPU implementation re-
sults to the CUDA implementation results when run on the Tesla
V100, since the Intel Xeon Platinum 8175M CPU and Tesla V100
GPU are both designed to be used in data centers and have some-
what similar power use; the V100 (SXM2 version) has a 250 Watt
max, while the Intel Xeon Platinum 8175MCPU power is not listed
but the similar Xeon Platinum 8168 CPU has a TDP of 205W (dif-
ference is that the 24 cores on the 8168 CPU are clocked at 2.7 GHz
as opposed to 2.5 GHz on the 8175M). The comparison shows that
the optimized CUDA implementation on the V100 is faster than the
optimized CPU implementation on (somewhat) comparable hard-
ware, with the V100 GPU speedup ranging from 1.9x to 4.2x over
the 8175M CPU. This result is not surprising given that the GPU
is designed to operate on many image pixels in parallel, which is
what happens in many steps of the implementations. It is interest-
ing to note that the optimized CPU implementation on the 8175M
CPU is significantly faster than the naive CUDA implementation
on the V100, showing that optimization is important even when
the architecture is ideal for the given algorithm.

Another interesting comparison is between theARM4-core CPU
and the GPU w/ 256 CUDA cores on the Jetson TX1 development
board. The initial and optimized runtimes for the CPU implemen-
tation are in Table 13, and the GPU implementation runtimes from
the previous section are in Table 7. In this comparison, the GPU
again comes out ahead when comparing the optimized implemen-
tations, with the GPU speedup ranging from 1.9x to 3.7x compared
to the CPU on the Jetson TX1.

8 CONCLUSIONS

The results of this work show that global stereo matching using be-
lief propagation can be significantly sped up on the GPU and CPU
with optimized memory management, using 16-bit half data rather
than 32-bit float data, and with more optimized data alignment. In
addition, this work shows that a parallel and optimized CPU im-
plementation is significantly faster than the initial single-threaded
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Stereo Set Init CPU Parallel CPU (w/ SIMD) Opt. CPU
Tsukuba 144.9 14.8 (7.1) 3.5
Venus 398.0 34.5 (17.3) 8.9
Barn1 637.5 52.3 (29.5) 13.8
Cones (q) 1355.8 133.9 (73.4) 33.1
Cones (h) 11512.5 1044.5 (598.2) 312.5

Table 12: Xeon Platinum 8175M CPU Results: Runtime (in

ms) using initial single-threaded CPU implementation, ini-

tial parallel CPU implementation (w/ AVX-512 SIMD in-

structions), and optimized CPU implementations on 8175M

CPU for each stereo set.

Stereo Set Init CPU Parallel CPU (w/ SIMD) Opt. CPU
Tsukuba 545.6 215.9 (134.2) 106.3
Venus 1696.4 610.4 (364.4) 275.7
Barn1 2724.3 916.2 (590.4) 464.5
Cones (q) 4491.4 2373.4 (1439.3) 1160.7
Cones (h) 36153.3 23288.1 (13748.6) 10903.9

Table 13: Tegra TX1 ARM CPU Results: Runtime (in ms)

using initial single-threaded CPU implementation, initial

parallel CPU implementation (w/ NEON SIMD instructions),

and optimized CPU implementations on the TX1 CPU for

each stereo set.

implementation, but the optimized CUDA implementation on the
flagship Tesla V100 GPU is still faster than the optimized CPU im-
plementation on any of the CPUs in the test set. The code used in
thiswork is available at https://github.com/sgrauerg6/cudaBeliefProp
and is released under the GNU General Public License.
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