Optimized Parallel Belief Propagation on NVIDIA
GPUs and CPUs

Scott Grauer-Gray
Morristown, NJ, United States

Abstract

Parallel processing is a common way to speed up many com-
puter vision algorithms including stereo matching. This work
looks at optimized parallel implementations of belief propa-
gation for stereo processing on NVIDIA GPU and x86/ARM
CPU architectures and shows runtime comparisons across
multiple GPU and CPU processors on a variety of input
stereo sets. The work goes on to present and show results of
retrieving an optimized parallel configuration for each input
stereo set, speedups/slowdowns when using 16-bit floats and
64-bit doubles compared to 32-bit floats, and speedups when
using templated disparity counts that allow the iteration
counts of loops that iterate through possible disparities to
be known at compile time.

1 Introduction

The retrieval of an accurate disparity map from a set of stereo
images is a known computer vision problem. Many methods
have been proposed, implemented, and evaluated, often re-
sulting in tradeoffs involving speed and accuracy, where the
faster methods generally result in a less accurate disparity
map. In particular, local methods that only consider the cur-
rent or a few neighboring pixels when retrieving disparity
are generally faster but less accurate than global methods
that take the entire images into account when processing.

One global method that is known to produce relatively
accurate disparity maps is belief propagation. Specifically,
this method involves the use of Markov random field (MRF)
models to generate an NP-hard energy minimization prob-
lem for retrieving the disparity at every pixel, and then us-
ing belief propagation (BP) to generate an approximate a
solution with reasonable computational cost. Sun et. al. [9]
introduced this method for stereo matching in 2003. In 2004,
Felzenwalb and Huttenlocher [2] introduced three improve-
ments to improve the runtime of belief propagation for stereo
matching without changing accuracy. This work is accom-
panied by C code! that implements these improvements and
runs on a single thread on the CPU.

During the 2000s, GPUs became more powerful and started
being used for general purpose computing on GPUs (GPGPU),
as the GPU can generally accelerate applications where pro-
cessing can be run in parallel on many threads. Belief propa-
gation for stereo matching is an obvious candidate for GPU
acceleration since it involves many independent operations
on at least half the image pixels in every major step.

1Code available at http://cs.brown.edu/people/pfelzens/bp

In separate works presented in 2006, Brunton et. al. [1]
and Yang et. al. [10] ported belief propagation to the GPU
using a graphics API with vector and fragment shaders, as
specific GPGPU APIs was not yet released at the time of the
work. After the release of CUDA for GPGPU in 2007, Grauer-
Gray et. al. [6] ported belief propagation for stereo match-
ing to the CUDA environment and presented work in 2008
that showed a significant speedup compared to Felzenwalb’s
CPU implementation. In 2010, Grauer-Gray and Cavazos [5]
presented work showing further optimizations to improve
the GPU implementation runtime, specifically optimizing a
CUDA kernel in the implementation to use shared memory
and registers to store frequently-accessed data rather than
slower local memory.

2 Belief Propagation For Stereo Matching

As described by Grauer-Gray and Cavazos [5], belief propa-
gation for stereo matching as implemented with the speedups
developed by Felzenwalb consists of the following steps:

1. Calculate the data cost for each pixel at each dispar-
ity in the disparity space at the bottom level of the
computation hierarchy.

2. Iteratively calculate the data costs at each succeeding
level of the hierarchy.

3. For each level in the hierarchy (starting from top):

a. For each pixel in the current ‘checkerboard’ set,
compute the message to send to its four-connected
neighbors in the alternate set using the current
message values and data cost. Repeat for i itera-
tions, alternating between the two checkerboard
sets.

b. If not at the bottom level of the hierarchy, copy
the message values at each pixel to a 2 X 2 block
of corresponding pixels in the succeeding level of
the hierarchy.

4. Retrieve the disparity estimate at each pixel using the
current message values and data costs, with the out-
put corresponding to the disparity that minimizes the
sum of the current message values and data cost at
the pixel. The disparity estimates across every pixel
represent the output disparity map.

The previous work in accelerated belief propagation showed
that each step can be parallelized on the GPU, with the re-
sult being a significant speedup over the CPU implementa-
tion with no decrease of accuracy in the resulting disparity
map compared to the ground truth.

http://cs.brown.edu/people/pfelzens/bp

Figure 1. Reference images from stereo sets benchmarked
in this work. Images shown are from (clockwise from upper
left) Tsukuba, Venus, Barn1, and Cones stereo sets.

Figure 2. Ground truth Tsukuba stereo set disparity map
(left) and Tsukuba stereo set disparity map generated with
initial CUDA implementation (right).

Stereo Set Dimensions | Disparities
Tsukuba (scaled down) 192 X 144 8

Tsukuba 388 X 288 16

Venus 434 X 383 21

Barn1 432 X 381 32

Cones (quarter-size) 450 X 375 64

Cones (half-size) 900 X 750 128

Cones (full-sized cropped) 900 X 750 256

Table 1. Stereo sets from the Middlebury Stereo Datasets
that are benchmarked in this work.

3 Stereo Sets

Seven stereo sets are benchmarked in the parallel imple-
mentations in this work. Five of the stereo sets are directly
from the Middlebury Stereo Datasets ([7] and [8]); these

Scott Grauer-Gray

stereo sets are Tsukuba, Venus, Barn1, and Cones (quarter-
sized and half-sized). The other benchmarked stereo sets are
a scaled down Tsukuba stereo set where the width/height
of the images and disparity count are half of the original
Tsukuba stereo set and a cropped full-sized Cones stereo set
where a 900x750 region around the center is cropped out
of the stereo reference and test images. These stereo sets
contain a variety of image dimensions and possible dispar-
ity value counts, ranging from the 192 X 144 scaled-down
Tsukuba stereo set with 8 possible disparity values to the
900 X 750 cones (full-sized cropped) dataset with 256 possi-
ble disparity values. The reference images of the Tsukuba,
Venus, Barn1, and Cones stereo sets are in Figure 1 and de-
tails for each stereo set is in Table 1.

Processor Architecture | Cores | TDP

H100 (GH200) NVIDIA GPU | 16896 | 450W-1000W
H100 (PCle) NVIDIA GPU | 14592 | 350W

A100 (SXM4) NVIDIA GPU | 6912 400W

RTX 3090 Ti NVIDIA GPU | 10752 | 450W

AMD Genoa x86 CPU 96 400W

(EPYC 9R14)

Emerald Rapids x86 CPU 48 330W

(Xeon 8559C)

Graviton4 ARM CPU 96 Not Disclosed
Azure Cobalt ARM CPU 96 Not Disclosed
NVIDIA Grace ARM CPU 64 Not Disclosed

Table 2. Information about each processor that is bench-
marked in this work. Will note that a NVIDIA GPU core is
not equivalent to a CPU core, and the TDP for AMD Genoa
and Emerald Rapids processors are from online searches and
not official (but seem to make sense).

4 Test Setup

In this work, all the stereo sets are processed using 5 levels
in the computation hierarchy with 7 iterations per level, the
relative weight of the data cost compared to discontinuity
cost is set to 0.1, and no smoothing is applied to the images
(smoothing sigma set to 0.0). The truncated linear model is
used for the data and discontinuity costs, with a maximum
value of 15.0 for the data cost and the maximum discontinu-
ity cost set to the number of possible disparity levels for the
stereo set divided by 7.5.

The GPUs used in this work are the NVIDIA H100 w/
Hopper architecture and the A100 and RTX 3090 Ti w/ Am-
phere architecture. The RTX 3090 Ti results are obtained us-
ing a local computer, while cloud computing from Lambda
Labs is used to run the implementations on the H100 and
A100. For the H100 benchmarking, both the GH200 instance
as well as an instance with the H100 PCle are benchmarked,
with the H100 in the GH200 instance expected to be faster
due to having more CUDA cores enabled and a higher TDP.

Optimized Parallel Belief Propagation on NVIDIA GPUs and CPUs

The A100 GPU that is benchmarked uses the SXM4 module
that has a greater TDP than the PCle version. The GPU run-
times do not include the time to transfer the input stereo set
to the GPU and to transfer the output disparity map back to
the host. Ubuntu 24.04 with CUDA 12 is used when bench-
marking the RTX 3090 Ti, while Ubuntu 22.04 with CUDA
12 is used when benchmarking the other GPUs.

The CPUs used in this work are the AMD Genoa (96 cores)
and Intel Emerald Rapids (48 cores) x86 server CPUs as well
as the Amazon Graviton4 (96 cores), Azure Cobalt (96 cores),
and NVIDIA Grace (64 cores?) ARM CPUs. Table 2 contains
a summary of all the processors benchmarked in this work.
Cloud computing from Amazon Web Services is used for
benchmarking the AMD Genoa, Emerald Rapids, and Gravi-
ton4 CPUs, Microsoft Azure cloud computing is used for
benchmarking the Cobalt CPU, and cloud computing from
Lambda Labs is used to benchmark the NVIDIA Grace CPU.
Ubuntu 24.04 with g++-13 is used in all CPU tests except for
the one on NVIDIA Grace, which uses Ubuntu 22.04 with
g++-11. The ARM CPUs support one thread per core while
the x86 CPUs support two threads per core via Simultaneous
Multithreading (SMT) / Hyper-Threading. However, SMT is
disabled in the AMD Genoa test environment so only one
thread per core is enabled when benchmarking that proces-
sor. Two threads per CPU core are supported in the Emerald
Rapids test environment.

The speedups shown in this work are relative to a run us-
ing the optimized CPU implementation on the AMD Rome
Epyc server CPU with 48 cores. All codes are compiled and
linked using the g++ compiler with the -O3 optimization
level enabled.

The ground truth Tsukuba stereo set disparity map and
disparity map generated with the optimized implementa-
tions are shown in Figure 2. This output disparity map dif-
fers from the output Tsukuba stereo set disparity map pre-
sented in the initial CUDA implementation work [6]; the
primary reason is because no smoothing is applied to the
stereo set images in this work while the smoothing sigma
was set to 1.0 in the initial CUDA implementation work.

5 Parallel Implementations

The parallel CUDA implementation in this work is based on
the implementation described by Grauer-Gray, et. al. in [6]
with updates and added optimizations that are described by
Grauer-Gray in [4]. The default thread block dimensions for
each kernel in the implementation is 32x4.

The parallel CPU implementation in this work is orginally
presented in [4] and uses OpenMP [3] as well as single in-
struction, multiple data (SIMD) instructions for maximum
parallelization in the kernels that dominate the runtime. By

2NVIDIA Grace CPU has 72 cores according to specs, but calls to "Iscpu”
and std::thread::hardware_concurrency() output 64 cores/threads for CPU
in test environment

default, the implementation uses all the concurrent threads
that are supported on the CPU in OpenMP parallelization
of the processing loops with AVX-512 SIMD instructions
on x86 CPUs and NEON SIMD instructions on ARM CPUs.
AVX-512 instructions allow for 512 bits to be processed in a
single instruction, which corresponds to 16 32-bit float oper-
ations processing simultaneously, while NEON instructions
allow for 128 bits to be processed in a single instruction.
AVX2 is used on x86 CPUs if AVX-512 is not supported and
allows for 256 bits to be processed in a single instruction.

The memory management and data alignment optimiza-
tions presented in [4] are used in both the CUDA and CPU
implementations in this work. Regarding memory manage-
ment, all the memory needed for processing on the target
device is allocated before the belief propagation runs and is
not deallocated until all benchmark runs are completed, so
the memory allocation and deallocation time is not included
in the runtime.

The parallel implementations support input configurations
where the disparity count of the stereo set is known at com-
pile time and cases where it is not. In this work, the more
general configuration where the disparity count is not tem-
plated is benchmarked and used in the overall results up to
Section 8, and comparisons between the two configurations
are shown and discussed in Section 8.

Both the CUDA and parallel CPU implementations are
at https://github.com/sgrauerg6/cudaBeliefProp and are re-
leased under the GNU General Public License.

5.1 Default Configuration Results

The results of running the parallel implementation using
default parallel configurations are shown in Table 3 with
the processors ordered by average relative speedup across
all benchmark stereo sets as compared to a baseline paral-
lel run on an AMD Rome CPU w/ 48 cores. As expected,
the CUDA implementation when run on the NVIDIA H100
gives the greatest speedup across all the tested processors.
However, the paralle]l CPU implementation results are com-
petitive with the CUDA results, with most of the CPU runs
showing greater or similar speedups as compared to the
A100 and RTX 3090 Ti GPUs. This shows that a well opti-
mized parallel CPU implementation that uses OpenMP and
SIMD instructions might be a viable alternative to a CUDA
implementation in some use cases.

6 Parallel Configuration Optimization

The runtime of the parallel belief propagation implementa-
tions can be further reduced by finding an optimized parallel
configuration for processing each input stereo set, with the
parallel configuration corresponding to the thread block di-
mensions for each kernel in the CUDA implementation and

https://github.com/sgrauerg6/cudaBeliefProp

Speedup Over Baseline Runs
Processor Small Images | Large Images | All
H100 (GH200) 2.12 3.50 2.69
Graviton4 1.87 2.24 2.00
H100 (PCle) 1.58 2.42 1.92
Azure Cobalt 1.77 2.15 1.92
Emerald Rapids 1.57 2.07 1.79
AMD Genoa 1.32 2.31 1.78
A100 (SXM4) 1.23 1.91 1.49
NVIDIA Grace 1.61 1.34 1.46
RTX 3090 Ti 1.47 1.31 1.31

Table 3. Average speedups over baseline run on each pro-
cessor with processors ordered from fastest to slowest.
Shows average speedup of runs using benchmark stereo
sets from Table 1 with smaller images only (first three sets),
larger images only (last three sets), and all stereo sets.

Implementation| Parallel Configuration Options

CUDA 32x4 (default), 16x1, 32x1, 32x2, 32x3,

(thread block 32x5, 32x6, 32x8, 64x1, 64x2, 64x3, 64x4,

dimensions) 128x1, 128x2, 256x1, 32x10, 32x12, 32x14,
32x16, 64x5, 64x6, 64x7, 64x8, 128x3, 128x4,
256x2

Parallel CPU max_cpu_threads (default),

(OpenMP thread | (3*max_cpu_threads)/4,
count) max_cpu_threads/2,
max_cpu_threads/4,
max_cpu_threads/8

Table 4. Parallel configuration options on parallel CPU
and CUDA implementations with default configuration
listed first. In the CPU options, max_cpu_threads corre-
sponds to number of concurrent threads supported via
std::thread::hardware_concurrency() function call.

to the OpenMP thread count in the paralle] CPU implemen-
tation. The default and complete set of parallel configura-
tion options for each implementation are in Table 4.

Testing found that the best results in the CUDA imple-
mentation occurred when the parallel configuration for each
kernel is optimized separately (allowing for different thread
block dimensions for each kernel), while the best results
in the CPU implementation occur when the same OpenMP
thread count is used across all parallel processing in the im-
plementation. Therefore, this step consists of finding opti-
mized thread block dimensions for each CUDA kernel in the
CUDA implementations and an optimized OpenMP thread
count to use across all parallel processing in the CPU imple-
mentation.

The optimized parallel configuration for each run is found
in a brute force manner. First, there are "test runs" where
candidate thread blocks dimensions/OpenMP thread counts
are benchmarked across every kernel. Then for the CUDA

Scott Grauer-Gray

implementation, an optimized parallel configuration is gen-
erated where each kernel is set to use the thread block di-
mensions with the lowest runtime for the specific kernel
across the "test runs". For the paralle] CPU implementation,
the optimized parallel configuration is set to have an OpenMP
thread count that corresponds to the thread count in the test
run with the lowest total runtime.

The average speedups on each processor when using this
parallel configuration optimization compared to using the
default parallel configuration across benchmark stereo sets
is shown in Table 5 and shows that this optimization gives
an average speedup of around 5% across all benchmark runs.
Notably, the speedup using this optimization is around or
greater than 20% when processing benchmark stereo sets
with smaller images on the AMD Genoa and Intel Emerald
Rapids processors, so there are cases where parallel config-
uration optimization provides a significant speedup.

Optimized Parallel Config Speedup

Processor Small Images | Large Images | All

H100 (GH200) 1.02 1.06 1.04
H100 (PCle) 1.03 1.06 1.05
A100 (SXM4) 1.05 1.07 1.07
RTX 3090 Ti 1.09 1.06 1.08
AMD Genoa 1.31 1.01 1.14
Emerald Rapids 1.19 1.00 1.08
Graviton4 1.08 1.00 1.03
Azure Cobalt 1.07 1.00 1.03
NVIDIA Grace 1.03 0.99 1.01

Table 5. Average speedups using optimized parallel config-
uration on each processor compared to default parallel con-
figuration. Shows average speedup of runs using benchmark
stereo sets from Table 1 with smaller images only (first three
sets), larger images only (last three sets), and all stereo sets.

7 Alternative Data Types

So far in this work, the data type used for data storage and
processing in the parallel belief propagation implementa-
tions has been the 32-bit float data type. However, the paral-
lel implementations also support using the 16-bit float data
type, which can speed up processing with loss of precision,
and the 64-bit double data type, which can add precision
but increases the runtime. This section shows runtime re-
sults using these alternative data type as compared to 32-bit
floats.

The benchmarking in this section uses the parallel config-
uration optimization described in Section 6; optimized par-
allel configurations are retrieved for each processing data
type for each input and used in the corresponding bench-
mark run.

Optimized Parallel Belief Propagation on NVIDIA GPUs and CPUs

7.1 16-Bit Float Data Type

The CUDA Toolkit began supporting the 16-bit half datatype
in July 2015 with CUDA 7.5. Specifically, CUDA 7.5 added
support for the half and half2 datatypes as will as intrinsics
supporting them, with bfloat16 datatype support later added
in the Amphere architecture. The CUDA processing in the
implementation when using 16-bit floats is essentially the
same as when using 32-bit floats, making it possible to have
the datatype be a template parameter to switch the CUDA
implementation datatype between 32-bit float, 16-bit float,
and 64-bit double. Support for the half2 datatype is more
complicated and is not currently supported in the CUDA
implementation.

Previous work in [4] found a significant speedup when
using 16-bit floats as compared to 32-bit floats in the CUDA
belief propagation implementation and states that "Investi-
gation of the ‘dominant’ kernel in each implementation us-
ing the NVIDIA Nsight Compute tool showed that memory
load/store instructions are a bottleneck when processing the
kernel and that using 16-bit half data reduces this bottle-
neck. Specifically, when processing the Tsukuba stereo set,
the Nsight Compute tool showed the same number of global
load and store instructions when 16-bit data compared to 32-
bit data, but the number of texture to L2 cache requests, L2
to texture returns, texture to SM (streaming multiprocessor)
returns, and bytes loaded/stored were all halved when using
16-bit data compared to 32-bit data. In addition, the compute
SM utilization increases from 11.5% to 30.9% when going
from 32-bit to 16-bit data while the memory utilization re-
mains around 80%, making it clear that memory use is a bot-
tleneck. For the Tsukuba stereo set, using 16-bit data eased
the memory use bottleneck and significantly decreased the
‘dominant’ kernel runtime”

On the CPU, most of the current architectures support
storage of processing data using 16-bit floats, but the data
must be converted to 32-bit floats in order to run SIMD arith-
metic operations on the data and then converted back to
16-bit floats for storage when the processing is done. Even
with this limitation, using 16-bit floats does result in a signif-
icant speedup in the parallel CPU implementations, and the
likely reason for this is that using 16-bit data reduces the
memory use bottleneck on the CPU in the same way that
it does on the GPU. Notably, the Intel Sapphire Rapids and
Emerald Rapids server CPUs do support SIMD operations
on 16-bit floats with support for AVX512-FP16 extensions,
making the conversion to 32-bit floats unnecessary on those
processors.

The average speedups on each processor when using 16-
bit floats as compared to 32-bit floats across benchmark stereo
sets is shown in Table 6 and shows that the speedup us-
ing this optimization ranges from around 1.25x to 1.62x on
stereo sets with larger images, with lesser speedups on stereo
sets with smaller images. The speedups using 16-bit floats

are greatest on the x86 CPUs and RTX 3090 Ti of the proces-
sors tested, followed by the NVIDIA data center GPUs with
ARM CPUs getting the least speedup. The Emerald Rapids
results show speedups with and without using AVX512-FP16
extensions and show an additional speedup of around 15%
when using AVX512-FP16 extensions.

It is worth noting that when AVX512-FP16 extensions are
used, the resulting disparity map on the Cones (full-sized
cropped) stereo set input is not as expected due to floating
point overflow in the run because of the reduced range of
16-bit floats compared to 32-bit floats (result is as expected
for the other stereo set inputs). The same overflow happens
when processing that stereo set in the CUDA implementa-
tion when the 16-bit "half" datatype is used but can be re-
solved in that implementation by using the 16-bit bfloat16
datatype that has a greater range (if it is supported on the
target GPU...bfloat16 support in CUDA starts in the Am-
phere architecture).

Speedup using 16-bit floats
Processor Small Images | Large Images | All
H100 (GH200) 1.05 1.38 1.21
H100 (PCle) 1.01 1.47 1.24
A100 (SXM4) 1.11 1.39 1.26
RTX 3090 Ti 1.21 1.44 1.37
AMD Genoa 1.14 1.62 1.37
Emerald Rapids 1.08 1.47 1.27
Emerald Rapids 1.27 1.66 1.46
(AVX512-FP16)
Graviton4 1.00 1.24 1.10
Azure Cobalt 0.99 1.25 1.14
NVIDIA Grace 0.99 1.46 1.19

Table 6. Average speedups using 16-bit floats in optimized
belief propagation processing compared to 32-bit floats.
Shows average speedup of runs using benchmark stereo
sets from Table 1 with smaller images only (first three sets),
larger images only (last three sets), and all stereo sets.

7.2 64-Bit Double Data Type

The CUDA and parallel CPU implementations support pro-
cessing using 64-bit double values in the same manner as
floats, with the data type being a template parameter that
gives the capability to switch between 32-bit float and 64-
bit double processing. Processing using 64-bit doubles gives
greater precision at the expense of speed. For belief propaga-
tion, the additional precision of 64-bit doubles is not needed
in order to give a "good" result, but it is still interesting to
benchmark the implementation using the data type to inves-
tigate the slowdown of using 64-bit doubles as compared to
32-bit floats when running the implementation on each pro-
Cessor.

The benchmarking results are in Table 7 and show greater
slowdown when the implementation is run on stereo sets

with larger images than with smaller images and that the
tested processors with the least slowdown when using 64-
bit doubles are NVIDIA data center GPUs (H100 and A100).

Slowdown using 64-bit doubles

Processor Small Images | Large Images | All

H100 (GH200) 0.74 0.62 0.67
H100 (PCle) 0.72 0.59 0.64
A100 (SXM4) 0.72 0.58 0.64
RTX 3090 Ti 0.56 0.61 0.58
AMD Genoa 0.66 0.52 0.59
Emerald Rapids 0.67 0.51 0.59
Graviton4 0.63 0.48 0.55
Azure Cobalt 0.65 0.47 0.58
NVIDIA Grace 0.60 0.47 0.52

Table 7. Average slowdowns using 64-bit doubles in op-
timized belief propagation processing compared to 32-bit
floats, with lower values corresponding to greater slow-
downs. Shows average slowdown of runs using benchmark
stereo sets from Table 1 with smaller images only (first three
sets), larger images only (last three sets), and all stereo sets.

8 Templated Disparity Counts

As noted in Section 5, the CUDA and parallel CPU belief
propagation implementations support input configurations
where the disparity count of the stereo set is known at com-
pile time and set as a non-type template parameter and cases
where the disparity count is not known at compile time and
the implementation is compiled to support any possible dis-
parity count. When the disparity count is known at compile
time, the loops that iterate through possible disparity values
can be better optimized by the compiler using optimizations
such as loop unrolling. In this section, both configurations
are run and compared across the benchmark stereo sets with
the speedup results of using templated disparity counts in
Table 8.

The results in the table show significant speedup using
templated disparity counts on smaller stereo sets where the
number of possible disparities is less than or equal to 21 and
lesser speedups on larger stereo sets. This result isn’t sur-
prising since most of the runtime in the belief propagation
implementation is in loops that go through all or most of
the possible disparity values for each pixel. When the dispar-
ity count is templated, those loops can be optimized using
loop unrolling and other loop optimizations that are possi-
ble when the iteration count is known at compile time. How-
ever, there are likely diminishing returns from these opti-
mizations as the loop iteration count increases, so it would
be expected that the templated disparity count configura-
tion gives a greater speedup on smaller stereo sets with a
lower number of possible disparity values.

Scott Grauer-Gray

In addition, the speedups using templated disparity counts
are larger on the NVIDIA GPUs runs compared to the par-
allel CPU runs, as the average speedup using templated dis-
parity counts on NVIDIA GPUs is as high as 1.89x on smaller
stereo sets compared to speedups up to 1.49x on ARM CPUs
and less than 1.3x on x86 CPUs.

Templated Disparity Count Speedup

Processor Small Images | Large Images | All

H100 (GH200) 1.89 1.52 1.77
H100 (PCle) 1.79 1.42 1.65
A100 (SXM4) 1.77 1.36 1.64
RTX 3090 Ti 1.85 1.46 1.77
AMD Genoa 1.26 1.03 1.15
Emerald Rapids 1.21 1.02 1.05
Graviton4 1.49 1.02 1.22
Azure Cobalt 1.40 1.03 1.25
NVIDIA Grace 1.48 1.04 1.23

Table 8. Average speedups using templated disparity count
on each processor that allows for loop optimizations com-
pared to configuration where it is not. Shows average
speedup of runs using benchmark stereo sets from Table
1 with smaller images only (first three sets), larger images
only (last three sets), and all stereo sets.

9 Conclusions

The results of this work show that a well-optimized par-
allel CPU implementation of belief propagation that uses
OpenMP and SIMD instructions can be competitive with an
optimized CUDA implementation, though the CUDA imple-
mentation on the H100 still had the fastest runtimes across
all tested processors. The work also shows how the parallel
CPU and CUDA implementations can be sped up further by
optimizing the parallel configuration for the input stereo set.
The work goes on to benchmark the speedup/slowdown of
using 16-bit floats or 64-bit doubles as compared to 32-bit
floats for belief propagation processing. Finally, the input
configuration option of templated disparity counts is pre-
sented and benchmarked.

The code used in this work is available at
https://github.com/sgrauerg6/cudaBeliefProp and is released
under the GNU General Public License, and the full bench-
marking results are available in the
BeliefProp/ImpResultsBenchmarkingPaper folder of the repos-
itory.

References

[1] A.Brunton, C. Shu, and G. Roth. Belief propagation on the GPU for
stereo vision. In Proc. 3rd Canadian Conf. Computer and Robot Vi-
sion, page 76, 2006.

[2] P.Felzenszwalb and D. Huttenlocher. Efficient belief propagation for
early vision. In IEEE Int. Conf. Computer Vision and Pattern Recog-
nition (CVPR 2004), pages 261-268, 2004.

https://github.com/sgrauerg6/cudaBeliefProp

Optimized Parallel Belief Propagation on NVIDIA GPUs and CPUs

(3]

L. Dagum and R. Menon. OpenMP: an industry standard API for [7]
shared-memory programming. In Computational Science & Engi-

neering, IEEE, pages 46-55, 1998.

S. Grauer-Gray. Optimizing Global Stereo [8]
Matching on NVIDIA GPUs and CPUs.
https://sgrauerg6.github.io/OptimizingGlobalStereoMatching.pdf.

S. Grauer-Gray, J. Cavazos. Optimizing and Auto-tuning Belief Prop-

agation on the GPU. In The 23rd International Workshop on Lan- [9]
guages and Compilers for Parallel Computing (LCPC) 2010.

S. Grauer-Gray, C. Kambhamettu, K. Palaniappan. GPU Implementa- [10]
tion of Belief Propagation Using CUDA for Cloud Tracking and Re-
construction. In 5th IAPR Workshop on Pattern Recognition in Re-

mote Sensing (PRRS) 2008.

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International Journal
of Computer Vision, 47(1/2/3):7-42, April-June 2002.

D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using
structured light. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2003), volume 1, pages 195-
202, Madison, WI, June 2003.

J. Sun, N.N. Zheng, and H.Y. Shum. Stereo matching using belief prop-
agation. IEEETrans. Pattern Anal. Mach. Intell. 25(7), 787-800 (2003).
Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nist er. Real-
time global stereo matching using hier-archical belief propagation.
In British Machine Vision Conf., pages 989-998, 2006.

https://sgrauerg6.github.io/OptimizingGlobalStereoMatching.pdf

	Abstract
	1 Introduction
	2 Belief Propagation For Stereo Matching
	3 Stereo Sets
	4 Test Setup
	5 Parallel Implementations
	5.1 Default Configuration Results

	6 Parallel Configuration Optimization
	7 Alternative Data Types
	7.1 16-Bit Float Data Type
	7.2 64-Bit Double Data Type

	8 Templated Disparity Counts
	9 Conclusions
	References

