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Abstract. A CUDA kernel will utilize high-latency local memory for
storage when there are not enough registers to hold the required data
or if the data is an array that is accessed using a variable index within
a loop. However, accesses from local memory take longer than accesses
from registers and shared memory, so it is desirable to minimize the use
of local memory. This paper contains an analysis of strategies used to
reduce the use of local memory in a CUDA implementation of belief prop-
agation for stereo processing. We perform experiments using registers as
well as shared memory as alternate locations for data initially placed in
local memory, and then develop a hybrid implementation that allows the
programmer to store an adjustable amount of data in shared, register,
and local memory. We show results of running our optimized implemen-
tations on two different stereo sets and across three generations of nVidia
GPUs, and introduce an auto-tuning implementation that generates an
optimized belief propagation implementation on any input stereo set on
any CUDA-capable GPU.

1 Introduction

Belief propagation is a general-purpose iterative algorithm used for inference on
problems that utilize Bayesian networks, Markov random fields, and other graph-
ical representations. Applications of the algorithm include free energy estimation
in proteins, turbo code decoding, and satisfiability.

Sun [16] introduced belief propagation as applied to the stereo vision problem,
and implementations that incorporate the algorithm generally output desirable
results according to the Middlebury stereo evaluation [14]. The input to the
problem consists of two images of the same scene, a reference image and a test
image, with each image displaying the scene from a different perspective along
the x-axis. The goal is to accurately retrieve the difference, or disparity, in lo-
cation along the x-axis of the object shown in each pixel of the reference image
to the same scene object in the test image. The disparity space refers to the
set of possible disparity values at each pixel. The output is given as a disparity
map with a disparity estimate at each pixel, and it is often visualized as a 8-bit
grayscale image by multiplying the disparity estimates by an appropriate value
to cover the 8-bit range. The results are often used to estimate distance to an
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object in the scene, as objects corresponding to pixels of greater disparity are
closer than objects of corresponding to pixels of lesser disparity.

For this problem, the belief propagation implementation consists of each node
in a 2-D grid computing and sending messages to each of its four-connected
neighbors in each iteration, where each message can be viewed as a vector con-
taining a value corresponding to each possible disparity. The algorithm must
iterate enough times for the message values to converge in order to obtain an
accurate output.

Unfortunately, the algorithm has some shortcomings. Many iterations are
necessary for the message values to converge, ample storage is needed to hold
the message value vectors at each pixel, and the naive computation time of each
message vector is of order O(n2), where n refers to the number of values in the
disparity space. Some applications of stereo vision require real-time processing,
and a naive belief propagation implementation on the CPU suffers from slow
run-time and high storage requirements.

Felzenszwalb [6] presents methods to mitigate these downsides, presenting
a hierarchical scheme to reduce the number of iterations necessary for message
value convergence, a checkerboard scheme that reduces storage requirements by
allowing updates to be performed ‘in place’ and that halves the number of mes-
sages computed and sent in each iteration, and an algorithm that generates the
message vectors in O(n) time using certain discontinuity models. These methods
are regularly applied in belief propagation implementations for stereo processing.

The running time of a belief propagation implementation can be reduced
further by taking advantage of the parallel processing capabilities of the graphics
processing unit (GPU), as each step of the algorithm can be performed in parallel
on each pixel. Brunton [2], Yang [18], Grauer-Gray ([8] and [7]), Xu [19], Liang
[10], and Ivanchenko [17] present implementations of belief propagation for stereo
processing on the GPU. Brunton and Yang map their implementations to the
graphics API, while Grauer-Gray, Xu, Liang, and Ivanchenko take advantage of
the CUDA architecture.

There are challenges to optimizing a program on the CUDA architecture, as
noted by Ryoo [13] and Datta [5]. An optimization that decreases the running
time of one program may increase the running time of another program, or of the
same program with a change of parameters, and the impact of an optimization
may vary across GPUs with non-uniform architectures.

In this paper, we focus on optimizations that can be applied to a CUDA
implementation of belief propagation as applied to stereo vision. We explore ways
to minimize the number of accesses to high-latency local memory on the GPU.
Data in local memory is frequently accessed in our initial implementation, and a
decrease in the number of local memory accesses is likely to lead to a faster run-
time. We present three optimized CUDA implementations of belief propagation,
and go on to present an auto-tuning implementation that can optimize CUDA
belief propagation across different stereo sets and GPUs.



Optimizing and Auto-tuning Belief Propagation on the GPU 3

float m[N];

float currMin = INFINITY;

for (int i=0; i < N; i++)

{

    m[i] = dataC[INDX_D_i] + 

         neigh1[INDX_N1_i] + 

         neigh2[INDX_N2_i] + 

         neigh3[INDX_N3_i]; 

    if (m[i] < currMin)

        currMin = m[i];  

}

.

.

__shared__ float m_shared[N*THREAD_BLK_SIZE];

float currMin = INFINITY;

for (int i=0; i < N; i++)

{

    m_shared[i_currThread] = 

        dataC[INDX_D_i] + 

        neigh1[INDX_N1_i] + 

        neigh2[INDX_N2_i] + 

        neigh3[INDX_N3_i]; 

    if (m_shared[i_currThread] < currMin)

        currMin = m_shared[i_currThread];  

}

.

.

(a) Naive Implementation 

     Using Local Memory

(b) Optimized Implementation 

     Using Register Memory

(c) Optimized Implementation 

     Using Shared Memory

float m[N];

float currMin = INFINITY;

#pragma unroll

for (int i=0; i < N; i++)

{

    m[i] = dataC[INDX_D_i] + 

         neigh1[INDX_N1_i] + 

         neigh2[INDX_N2_i] + 

         neigh3[INDX_N3_i]; 

    if (m[i] < currMin)

        currMin = m[i];  

}

.

.

Fig. 1. Code analogous to a portion of the dominant kernel of our CUDA belief prop-
agation implementation; shows the naive and optimized register / shared memory im-
plementations.

2 Optimization Overview

As described in the programming guide [1], CUDA allows the GPU to be utilized
as a co-processor to the CPU for general-purpose programming, processing a ker-
nel function on multiple threads simultaneously. Each thread contains a unique
ID within a 1D, 2D, or 3D thread block structure, and each thread block is part
of a 1D or 2D grid structure of thread blocks. Each thread within a block is exe-
cuted on the same multiprocessor and is processed as part of a 32-thread chunk
known as a warp. The number of active warps per multiprocessor is bounded by
a GPU-specific maximum, placing a ceiling on the parallelism in the program
execution. However, the number of active warps is often limited by the number
of registers or the shared memory available on each multiprocessor. The ratio
of the actual number of active warps to the maximum number of active warps
during the kernel execution represents the multiprocessor occupancy.

To illustrate potential optimizations, we describe the following algorithm
which is analogous to a portion of the most heavily-used/dominant kernel of our
belief propagation implementation:

1. Set a float variable ‘currMin’ to infinity.
2. For i = 1 to some N do the following:

(a) Compute mi, the sum of the values accessed from specific indices in four
separate arrays (the data cost array and the message arrays from three
neighbors, using the indices INDX D i, and INDX N1 i, INDX N2 i, and
INDX N3 i, respectively) in global memory, and store the value to a
specific form of storage (local, shared, or register memory).

(b) Check if mi is less than the value of ‘currMin’; if so, set ‘currMin’ to mi.

The set of mi values are accessed, manipulated, and compared with each
other in future operations, so it makes sense to store them in a structure such
as an array that allows for easy access via index value.
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Our initial implementation causes the mi values to be stored in an array
which is local to the thread, resulting in the utilization of local memory on the
GPU. Unfortunately, accesses to data in local memory are slow compared to
accesses to data in registers or shared memory. We go on to generate optimized
implementations where local memory accesses are converted to register or shared
memory accesses. Code corresponding to each implementation is displayed in
Figure 1. In the register memory implementation, the loop is completely un-
rolled via the ‘#pragma unroll’ directive; this changes the implementation such
that the array is no longer indexed via a variable value within a loop and is no
longer automatically stored in local memory. In the shared memory implemen-
tation, the array m shared is shared across every thread in a thread block of
size THREAD BLK SIZE; the index i currThread in the code is unique to each
thread in the block; it corresponds to the location of the mi value stored in the
array m shared for the thread.

Intuitively, one would expect the optimized implementations to be faster
than the initial implementation since accesses to high-latency local memory in
the initial implementation are replaced with accesses to low-latency registers
or shared memory in the optimized implementations. However, the utilization
of a greater number of registers per thread in the register implementation and
of shared memory in the shared memory implementation limits the number of
thread warps which can be processed in parallel, decreasing the multiprocessor
occupancy and possibly adversely affecting the running time. The only way to
truly determine the effect of these optimizations is to perform experiments which
involve comparing the results of the different implementations; we perform such
experiments using these optimizations and describe the results in Section 5.

3 CUDA Belief Propagation

In this section, we present a initial CUDA implementation of belief propagation;
the implementation utilizes the speed-ups described by Felzenszwalb [6] and
consists of the following steps:

1. Calculate the data cost for each pixel at each disparity in the disparity space
at the bottom level of the hierarchy.

2. Iteratively calculate the data costs at each succeeding level of the hierarchy.
3. For each level in the hierarchy (starting from top):

(a) For each pixel in the current ‘checkerboard’ set, compute the message to
send to its four-connected neighbors in the alternate set using the current
message values and data cost. Repeat for i iterations, alternating between
the two checkerboard sets.

(b) If not at the bottom level of the hierarchy, copy the message values at
each pixel to a 2 X 2 block of corresponding pixels in the succeeding
level of the hierarchy.

4. Retrieve the disparity estimate at each pixel using the current message values
and data costs, with the output corresponding to the disparity that mini-
mizes the sum of the current message values and data cost at the pixel. The
disparity estimates across every pixel represent the output disparity map.
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Grauer-Gray [8] showed that each of the steps of the algorithm can be per-
formed in parallel using the CUDA architecture, and the resulting disparity
map is obtained more quickly using a CUDA implementation as compared to a
sequential CPU implementation. However, that work does not discuss optimiza-
tions which can be applied to decrease the running time of the CUDA implemen-
tation. In this paper, we present optimizations that can be utilized to reduce the
running time of a CUDA implementation without affecting the output disparity
map.

In our experiments, we first smooth the images using a Gaussian filter of
sigma value 1.0, then run belief propagation using 5 hierarchical levels, 10 BP
iterations per level, and a disparity space ranging from 0 to 14 in increments of
1. The truncated linear model is used for the data and discontinuity costs, with a
maximum value of 15.0 and 1.7 for the data and discontinuity cost, respectively.
The relative weight of the data cost as compared to the discontinuity cost is held
at .07.

Our initial CUDA experiments utilize the nVidia GTX 285 GPU and are
compiled using CUDA toolkit 3.1. The GTX 285 contains 30 multiprocessors,
each containing 8 processors for a total of 240 parallel processors, with 16392
registers and 16 KB shared memory available in each multiprocessor. The thread
block dimensions are set to 32 X 4, with 32 corresponding to the width and 4
corresponding to the height.

We begin with a naive CUDA belief propagation implementation, using a sep-
arate kernel for each step/sub-step of the algorithm, and run our implementation
on the 384 X 288 Tsukuba stereo set shown in Figure 2. This implementation
runs in 47.0 ms; the resulting disparity map is shown to the right of the stereo
set in the figure.

Fig. 2. Left/Middle: Images of Tsukuba stereo set; Right: Computed disparity map
using our implementation

We utilize the CUDA profiler to analyze the running time of each kernel
and discover that almost 70% of the running time is spent in the kernel which
computes four arrays of message values, each to be received by one of the current
pixel’s four-connected neighbors. As a result, we focus our optimizations on this
kernel, which corresponds to step 3a of the aforementioned belief propagation
algorithm. Each array of message values is computed in the kernel using the
following O(n) algorithm introduced by Felzenszwalb [6]:



6 Grauer-Gray and Cavazos

1. For each disparity d in the disparity space, initialize the message value md to
the sum of the data cost and the current message value of each non-recipient
neighbor, where the data costs and message values are retrieved from global
memory, and retrieve the minimum md value; this step corresponds to the
code described in Section 2.

2. Set mmax to the sum of the minimum md value and Tdata, the truncation
value that corresponds to the maximum possible discontinuity cost.

3. Loop from d = 1 to d = maxdisp, setting each md = min(md−1 + 1, md),
assuming that the values in the disparity space differ by 1.

4. Loop from d = maxdisp−1 to d = 0, setting each md = min(md+1 + 1, md),
assuming that the values in the disparity space differ by 1.

5. Loop from d = 0 to d = maxdisp, setting each md = min(md, mmax), and
compute the summation of the output md values.

6. Retrieve the average message value by dividing the summation of the output
md values by the number of message values

7. Loop from d = 0 to d = maxdisp, setting md = md - (average message value).

8. Store the resulting message values md for each disparity d in the appropriate
location in global memory for use in the following iteration or final disparity
estimation.

Inspection of the resulting PTX code and the profiling output reveals that
local memory is utilized to hold the array that contains the message values that
are currently being computed, causing a large number of accesses to the high-
latency storage.

In the following sections, we discuss strategies to reduce or eliminate the use
of local memory in this array, looking at ways to utilize registers and shared
memory rather than local memory.

The number of local loads/stores given in the results correspond to totals
across all invocations of this kernel, while the number of registers and the occu-
pancy refers to the resource use in a single invocation of the kernel.

4 Experimental Methodology

We first run experiments using optimized implementations that utilize either
registers or shared memory in the array that contains the message values that
are currently being computed, go on to introduce a hybrid implementation that
combines the usage of register, shared, and local memory in the array, and finally
develop an auto-tuning implementation to generate the optimal parameters for
the hybrid implementation that works across different stereo sets and GPUs.

We initially perform our experiments using the GTX 285 GPU, and then go
on perform some of the same experiments using the Tesla C870 and the GTX
470, CUDA-capable GPUs with architectures that differ from the GTX 285.
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5 Optimization Results: Register and Shared Memory

Implementations

In this section, we describe the results of applying optimizations to the most
heavily used kernel of our CUDA belief propagation implementation; these opti-
mizations are intended to eliminate the use of local memory in the computation
of the message values corresponding to each disparity, placing the data in regis-
ters or shared memory rather than local memory.

The first optimized implementation utilizes registers to store message values
via the method shown in the sample code in Figure 1; this can be viewed as an
application of the register promotion/scalar replacement optimization described
by Cooper [4] and Callahan [3], where a value in memory is placed in a register
for quick access. However, this optimization increases register pressure, which
decreases the number of thread blocks which can run in parallel and may cause
register spilling into local memory.

The second optimized implementation takes advantage of the shared memory
present on each multiprocessor to store message values via the method shown in
the right of Figure 1; the utilization of shared memory as a user-managed cache
is a common CUDA optimization as described in the programming guide [1]. It
is often profitable to load values from global memory into shared memory and
then access/update the values from there to take advantage of the low latency
associated with shared memory.

The results of running these optimizations are displayed in Table 1. The
multiprocessor occupancies did decrease due to increased use of registers/shared
memory in the optimized implementations. Still, the total running time on the
GTX 285 decreased from 47.0 ms using the initial CUDA implementation to 24.3
ms using the register implementation and to 25.4 ms using the shared memory
implementation, corresponding to speed-ups of 1.93 and 1.85, respectively, over
the initial CUDA implementation.

Storage/Loop Unroll
Setting

Num lo-
cal loads

Num
local
stores

Num
regs

Occup. Total running
time

Speedup
from init.
CUDA imp.

Initial CUDA imp. on
GTX 285

1307529 7360296 37 0.375 47.0 ms —

Register memory imp.
on GTX 285

0 0 110 0.125 24.3 ms 1.93

Shared memory imp.
on GTX 285

0 0 53 0.25 25.4 ms 1.85

Table 1. Running times and resource use of the initial and the optimized register
and shared memory CUDA belief propagation implementations on Tsukuba stereo set
on the GTX 285. The resource use data corresponds to the most heavily used kernel
described in Section 3.



8 Grauer-Gray and Cavazos

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

S
p

e
e

d
u

p
 v

s
. 

In
it

. 
C

U
D

A
 I

m
p

.

Num Values (out of 65) in message array stored in shared memory
(remaining values stored in reg or local memory depending on experiment)

Local/Shared Memory Imp. w/ 32 X 4 Thread Block
Local/Shared Memory Imp. w/ 32 X 2 Thread Block

Reg/Shared Memory Imp. w/ 32 X 4 Thread Block
Reg/Shared Memory Imp. w/ 32 X 2 Thread Block

Fig. 3. Speedup of running the hybrid CUDA imp. (vs the initial CUDA imp.) on the
‘Cones’ stereo set with the GTX 285 using varying amounts of shared and register/local
memory.

6 Hybrid Implementation: Multiple Memory Modes In a

Single Implementation

Next, we create a hybrid implementation which can utilize shared, register, and
local memory in the array used for computation of the message values on the
GPU. This allows more values to be placed in low-latency shared/register mem-
ory without resorting to high-latency local memory and allows the programmer
to direct storage to local memory without dealing with the unpredictable effects
of register spilling.

Our implementation allows the programmer to store x values of the array
in register memory, y values in shared memory, and z values in local memory.
The values in register memory may be spilled into local memory if there are not
enough registers allocated to hold them or if any loops accessing them becomes
too large to be unrolled, while the number of values which can be stored in shared
memory is limited by the shared memory available on the multiprocessor.

We run our hybrid implementation on the GTX 285 using the quarter-sized
version of the ‘Cones’ stereo set included as part of the 2003 Middlebury stereo
sets [15]. These images measure 450 by 375 and have a disparity range from 0
to 64; the remaining parameters are the same when processing this image set as
the Tsukuba set described in Section 3.

Our initial CUDA implementation described in Section 3 processes the images
in 420 ms on the GTX 285; we use this result as the basis for the speed-up of
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our optimizations. The optimized register memory implementation described in
Section 5 processes the stereo set in 300 ms, while the size of the input disparity
range precludes running our optimized shared memory implementation (also
described in Section 5); there is not enough shared memory available on the
multiprocessor to store the entire array used for message value computation
when using a disparity increment of 1 and thread block dimensions of 32 X 4.

We go on to perform four sets of experiments using the our hybrid imple-
mentation; the results of each set of experiments on the GTX 285 in terms of
speed-up over the initial CUDA implementation are shown in Figure 3, while
the data corresponding the best-performing configuration is displayed in Table
2.

In the first set of experiments, we hold the thread block dimensions constant
at 32 X 4 and adjust the register/shared memory usage when placing the values
in the array used for the computation of message values. In the second set of
experiments, we set the thread block dimensions to 32 X 2 to allow greater use
of shared memory when updating the message values; these dimensions allow up
to 61 message values in each thread to be stored in the 16 KB shared memory
available on each multiprocessor on the GTX 285 compared to 31 message values
when using 32 X 4 thread blocks. In the third and fourth sets of experiments,
we use the same 32 X 4 and 32 X 2 thread block dimensions and utilize shared
and local memory rather than shared and register memory.

The best-performing configuration on the GTX 285 gives a speedup of 1.76
times over the initial CUDA implementation; this shows that with the right
choice of parameters, our hybrid implementation can be utilized to reduce the
running time of CUDA belief propagation.

Optimal Configuration and run-time data/results

GPU (config.) Thread
Block
Dims

Num vals in
reg.-shared-
loc. mem. in
mess. array

Num lo-
cal loads

Num
local
stores

Num
regs
used

Occup. Total
run-
time

Speedup
over
Init.
CUDA
imp.

GTX 285 32 X 2 34-31-0 2209184 4418368 124 0.125 238.0
ms

1.76

Tesla C870 32 X 2 14-51-0 0 0 120 0.083 840.2
ms

1.43

GTX 470 (fav
L1 cache)

32 X 2 0-7-58 4523184 4339010 61 0.333 231.2
ms

0.94

GTX 470 (fav
shared mem)

32 X 2 0-63-2 87327 133654 59 0.125 189.6
ms

1.19

Table 2. Optimal configuration and corresponding results obtained when running our
CUDA hybrid implementation on the ‘Cones’ stereo set using the GTX 285, Tesla
C870, and GTX 470 GPUs. The resource use data corresponds to the most heavily
used kernel described in Section 3.



10 Grauer-Gray and Cavazos

6.1 Hybrid Results Discussion

While investigating the results of the hybrid implementation experiments, we
discovered that the running time often decreases when moving to a configuration
which allows for an increase in occupancy from the previous configuration, and
then the running time increases with increased usage of local memory until the
parameter set allows for another increase in multiprocessor occupancy.

Based on this observation, we believe that it is possible to run experiments
using a single well-generated configuration at each occupancy to retrieve the
optimal configuration, rather than searching the entire optimization space. In the
next section, we introduce such a auto-tuning system that uses this observation
to optimize belief propagation on any CUDA-capable GPU.

7 Auto-Tuning Implementation

In this section, we present our auto-tuning implementation introduced in Section
6.1. At each occupancy, we produce the configuration that maximizes the usage
of shared/register memory, with the goal to minimize the number of accesses to
local memory. Then, we compare the results across occupancies to retrieve the
optimal configuration.

The steps of our auto-tuning implementation are as follows:

1. For the input max occupancy, determine the thread block dimensions. The
width is set at 32, while the height is retrieved as follows:

(a) Retrieve the whole number of rows of length 32 which are to be processed
in parallel on each multiprocessor using the input max occupancy and the
GPU-specific max number of threads which can be processed in parallel
on each multiprocessor.

(b) Calculate the maximum thread block height (1-16) that allows for this
number of rows to be processed concurrently on each multiprocessor,
operating under the GPU-imposed constraint that no more than 8 thread
blocks can be processed concurrently on each multiprocessor.

(c) If no thread block height meets the above criteria, decrement the number
of rows by one and return to the previous step. This process continues
until the criteria is met.

2. Determine the number of registers which can be allocated to each thread
based on the thread dimensions, max occupancy, and the number of registers
available on each multiprocessor.

3. Set a NUM REG VALUES INITIAL number of values to be stored in reg-
ister memory in the array used for the computation of message values (note
that this data may be spilled to local memory).

4. If there are still values left to be stored in the array, determine the number
of values that can be stored in shared memory with the given occupancy,
and set the minimum of that value and the number of values that still need
to be stored in shared memory.
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5. If there are still values to be stored, place the remaining values in register
memory until MAX REG VALUES are placed in register memory. Then
place the remaining values in local memory.

This implementation can be viewed as an application of tiling, as we perform
experiments using data partitions of varying sizes via changing the maximum
occupancy. A greater portion of the data can be stored in low-latency register
and shared memory with a lower multiprocessor occupancy, but at the cost of
less parallelism.

In our experiments, we set the NUM REG VALUES INITIAL to 12 and
MAX REG VALUES to 50 data elements, which leads to register spillover but
which led to a faster run-time than specifically placing more of the data in
local memory. Then, we test our implementation at each occupancy from 0.04
to 1.00 in increments of 0.02. The results are given in terms of speed-up over
the initial CUDA implementation in Figure 4, with the maximum speed-up and
the difference from the optimal implementation in Section 6 shown in Table 3.
The maximum speedup over the initial CUDA implementation on the GTX 285
using this implementation is 1.76, which is the same as the speed-up found in
Section 6 and is generated using fewer trials. In the future, we plan to look into
improvements to the framework in order to generate better results in fewer trials.
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Fig. 4. Results of auto-tuning at different occupancy levels.

8 Experiments Using Different GPUs

To compare the results across multiple generations of GPUs, we perform the
hybrid implementation and auto-tuning experiments on the Tesla C870 GPU,
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Optimal Configuration from auto-tuning

GPU (config.) Max oc-
cupancy

Running
Time (ms)

Speed-up
over Init.
CUDA
imp.

% Difference in
speedup from opt.
imp. from Section 6

GTX 285 0.14 238.3 ms 1.76 0.0%

Tesla C870 0.10 797.7 ms 1.51 +5.06%

GTX 470 (favor
L1 cache)

0.58 227.6 ms 0.95 +1.56%

GTX 470 (favor
shared mem)

0.16 188.0 ms 1.20 +1.01%

Table 3.Optimal Results obtained from auto-tuning at varying maximum occupancies.

which uses a GPU architecture which proceeded the GTX 285, and the GTX
470 GPU, which utilizes the Fermi architecture that succeeded the GTX 285.
The results are shown with the GTX 285 results in Figure 4 and Table 2.

The Tesla C870 GPU utilizes the G80 architecture that proceeded the GTX
285; it contains 16 multiprocessors, each with 8 processors for a total of 128
processors [1]. Each multiprocessor contains 16 KB shared memory and 8192
registers, representing half the number of registers per multiprocessor compared
to the GTX 285. Meanwhile, the GTX 470 utilizes the GF100 (Fermi) architec-
ture that succeeded the GTX 285; this GPU contains 14 multiprocessors with 32
processors each for a total of 448 processors. Each multiprocessor contains 32768
registers and 64 KB which is shared between shared memory and L1 cache. The
L1 cache on each multiprocessor along with the global L2 cache reduces the la-
tency associated with local memory. The programmer can either allocate 16 KB
shared memory / 48 KB L1 cache per multiprocessor or 48 KB shared memory
/ 16 KB L1 cache per multiprocessor [1]; we perform experiments using each
configuration. Our experiments on the GTX 285 and Tesla C870 are compiled
and run using CUDA 3.1, while the experiments using the GTX 470 utilize a
beta version of CUDA 3.2.

Our experiments using the GTX 470 reveal that unrolling the loops to place
the data in registers does not decrease the running time as it does on the GTX
285 and the Tesla C870; one possible reason for this is the L1 cache present on
the GTX 470, as this decreases the latency associated with local memory. As
a result, we set NUM REG VALUES INITIAL and MAX REG VALUES to 0
when performing auto-tuning on this GPU; this places as much data as possible
in shared memory given the occupancy, and then places the remaining data in
local memory.

The results show that our implementations are flexible across GPUs; our
system is able to generate an optimal configuration for each architecture. Inter-
estingly, the optimal implementation retrieved on the GTX 470 when favoring
L1 cache does not give a speed-up over the initial implementation; this is likely
because the presence of the larger L1 cache results in lower-latency accesses
to local memory. Nevertheless, our framework is able to obtain a significantly
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faster implementation on the GTX 470 when favoring shared memory; we obtain
a speedup of 1.20 times over the initial CUDA implementation using this option.

9 Splitting up the image

Now, we modify the implementation to allow for image splitting in order to
increase the flexibility of our implementation across GPUs with varying amounts
of DRAM and to relax the constraint on image size and the number of disparity
levels. This implementation splits the input images into multiple partitions, runs
belief propagation on each partition, and then combines the results.

To prevent inaccurate measurements on the edge of each partition, our im-
plementation allows padding to be applied on each image partition, making the
partition size larger than the section included in the output disparity map.

We perform our experiments using the half-sized and full-sized images of the
‘Cones’ stereo set described in Section 6; these stereo sets measure 900 by 750
with a disparity range from 0 to 128 and 1800 by 1500 with a disparity range
from 0 to 255, respectively. We set the padding to 20 pixels in each experiment.
On the half-sized ‘Cones’ stereo set, we divide the image into three rows, and on
the full-sized set, we divide the image into 25 partitions (5 ways vertical and 5
ways horizontal). The remaining parameters remain the same as in the previous
experiments.

We benchmark our implementations on the GPU using the initial CUDA
implementation as described in Section 3. Then, we utilize our auto-tuning im-
plementation to retrieve an optimal configuration on each GPU; the resulting
running time and speed-up over the initial CUDA implementation on the image
sets using this optimal configuration are shown in Table 4.

As the number of disparity values increases, a greater portion of the data
is placed into local memory due to the limited amount of registers and shared
memory on each processor. As a result, the optimized results are very similar to
the initial CUDA results in these experiments. Future work includes research into
methods intended to optimize the running time when there is a larger disparity
space.

Optimal Configuration from auto-tuning

GPU (config.) Max occupancy Running Time Speed-up over initial
CUDA imp.

GTX 285 0.14 (0.14) 3120 ms (31500 ms) 1.18 (0.97)

Tesla C870 0.36 (0.36) 8260 ms (74900 ms) 1.01 (0.94)

GTX 470 (favor
L1 cache)

0.54 (0.64) 1980 ms (18600 ms) 0.98 (0.98)

GTX 470 (favor
shared mem)

0.58 (0.54) 1940 ms (18500 ms) 1.02 (0.99)

Table 4. Optimal Results on half-sized (full-sized) ‘Cones’ stereo set obtained from
auto-tuning.
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10 Related Work

We discussed related work in GPU belief propagation in Section 3. In addition,
there is a body of work related to optimizing/auto-tuning on the GPU. Ryoo
[13] looked at optimizations targeted to hide the stalling associated with long-
latency operations, methods to be distribute the workload, reducing the number
of dynamic instructions, and maximizing intra-thread parallelism and resource
use on the GTX 8800 GPU. Datta [5] looked at optimizing and auto-tuning the
stencil computation on a variety of multi-core architectures, including the GTX
280 GPU. Nukada [12] presented a method of auto-tuning the 3D FFT library
on CUDA, while Li [9] looked at optimizing and auto-tuning a CUDA implemen-
tation of the GEMM algorithm. Meanwhile, Liu [11] introduced a more general
adaptive framework that takes the input parameters and uses the framework to
generate the optimal CUDA implementation for the given input.

Our work differs from this body of related work because of our focus on
optimizing and developing an auto-tuning framework for the belief propagation
algorithm that has not been optimized for CUDA across a large range of possible
inputs and GPUs.

11 Conclusions and Future Work

In this paper, we explored methods to optimize a CUDA belief propagation im-
plementation for stereo vision processing. Our results provide insights and results
which can be used to optimize a real-life implementation of belief propagation for
stereo; such an implementation could be utilized as part of a real-time computer
vision system, among other real-world applications.

In the process, we explored the optimization space of using local, shared,
and register memory options for data storage on the GPU. It is clear that high-
latency local memory accesses should be kept to a minimum, and we explored
various options to achieve that goal. We looked at the results of optimizations
on the GTX 285, Tesla C870, and GTX 470 GPUs, and discovered that the
properties of the target GPU(s) must be taken into account when optimizing a
CUDA program. We showed that our optimizations work on two distinct stereo
sets with different properties.

In the future, we intend to explore various properties of the CUDA compiler,
such as when the compiler will automatically unroll a loop inside a kernel and
how the compiler handles register spilling. We plan to run our optimized be-
lief propagation implementations on stereo sets with varying characteristics and
with a variety of input parameters, as well as explore how to optimize a belief
propagation implementation for 2D motion estimation from a set of sequential
images.
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