
Photon Mapping On The GPU

Scott Grauer-Gray
University of Delaware
sgrauerg@gmail.com

Abstract

This paper discusses photon mapping and explores
various issues of implementing the algorithm using the
parallel processing power of the GPU via CUDA. The
first implementation is a straight-forward, naive imple-
mentation of photon mapping using a simple scene con-
sisting of only Lambertian surfaces. Then, the imple-
mentation is modified to address various shortcomings
of the naive implementation, to allow the surfaces to ex-
hibit the Phong reflection model, and to decrease noise.
The results are promising; it is clear that there is poten-
tial for photon mapping on the GPU.

1. Photon Mapping

Photon mapping is a popular technique in computer
graphics that is used to simulate the illumination ob-
jects in a scene. The technique was developed by Hen-
rik Wann Jensen in 1996 and marked an improvement
from the then-popular ray tracing/radiosity techniques
in many situations[2]. The key feature of photon map-
ping is the separation of the photon map from the geo-
metric representation of the scene, making it possible to
simulate illumination in complex scenes.

Specifically, photon mapping can be viewed as a
two-pass algorithm. In the first pass, photons are emit-
ted from random points in each light source and sent
into the scene in random directions. When a photon in-
tersects with a surface in the scene, the photon is either
absorbed by the surface or reflected and continues to
potentially hit more surfaces.

The fate of the photon at the photon-surface inter-
section is determined using Russian Roulette, a Monte
Carlo technique that uses random sampling. First, a ran-
dom decimal value between 0 and 1 is generated. Then,
if the decimal value is below a certain reflectance REFL
for the surface, the photon is reflected, and the location
of the photon-surface intersection is stored in the photon
map to use in the second pass. Otherwise, the photon is

absorbed.

In the second pass of the algorithm, each point on
each surface of the scene is rendered using the photon
map. The more photons on the surface that are within a
radius RAD of the point, the greater the illumination of
the point.

It must be noted that there are many possible vari-
ations to the general algorithm; the algorithm as de-
scribed in this paper is the version that is implemented
on the GPU using CUDA. In addition, the illumina-
tion of a surface point is often divided into four parts:
direct illumination, specular illumination, caustics on
diffuse/slightly glossy surfaces, and soft indirect illu-
mination. Photon mapping is a popular technique for
caustics and soft indirect illumination, but ray tracing
is often the choice method for direct illumination and
specular illumination since ’too many’ photons may
be required for sufficient illumination accuracy. How-
ever, in the implementation described in this paper, pho-
ton mapping is the illumination method used for every
source of illumination.

2. Photon Mapping on the GPU using
CUDA

2.1. Previous Work

There is no scholarly literature describing a general
CUDA implementation of photon mapping. In [4], Pur-
cell describes a GPU implementation of photon map-
ping using shaders and the graphics API. Then in [8],
Zhou presents photon mapping as an application of his
CUDA real-time KD-tree construction implementation,
but he limits photon mapping to caustics and not to
other types of illumination. Finally, Singh and Stein-
hurst both discuss photon mapping on simulated GPU-
like architecture in [5] and [6], respectively.



2.2. Random Values on the GPU

One issue regarding photon mapping on the GPU
with CUDA is the parallel generation of random val-
ues. Multiple steps of the photon mapping algorithm
require the generation of random values, and there is
no built-in implementation of random value generation
on the GPU. One option is to sequentially generate all
random values on the CPU and pass them to the GPU.
Fortunately, this is not necessary; implementations of
random number generation using CUDA on the GPU
are available. One implementation uses the Mersenne
twister algorithm [3] and another uses the rand48 al-
gorithm [7] to generate random values in parallel. The
rand48 implementation is used in the GPU implementa-
tion described in this paper. It is worth noting that some
initialization steps, including the generation of the ini-
tial set of random values and of the rand48 algorithm
parameters, must be performed on the CPU in order to
begin GPU random number generation.

2.3. Naive Implementation

Naively, photon mapping easily maps to the SIMD
model favored by CUDA and the GPU[1]. First, pho-
tons are emitted from random locations in random di-
rections from the light source(s) in the scene. Then, the
photon-surface intersections are calculated and stored
for all photons in parallel. In both steps, each photon is
mapped to a different thread; calculations for all pho-
tons can be performed in parallel. Then, in the ren-
dering pass, and the number of photons within RAD of
each point on the current surface is retrieved in order to
determine the illumination of each point in a 64 X 64
mesh on each surface, and the illuminated scene is dis-
played by taking advantage of the interoperability be-
tween CUDA and OpenGL. Here, the process works in
parallel by mapping each surface point to a single thread
when determining surface illumination. The operations
in each pass require no data sharing across threads in
this model; the algorithms can be viewed as ’embar-
rassingly parallel’.

Unfortunately, there are a couple of shortcomings of
this algorithm:

1. As the first pass progresses, more and more pho-
tons as absorbed by surfaces in the scene and the
threads that these photons map to have ’nothing’
to do while the few threads mapped to photons still
reflecting off surface(s) still have work to do. It is
not possible to ’only’ run the CUDA kernel on the
threads mapped to ’still-active’ photons in this im-
plementation, so the kernel must continue to call

every thread. As a result, cycles are wasted on
threads with nothing to do.

2. To prevent write conflicts, the photon-surface
intersection is stored at index (numBounce
* TOTAL NUM PHOTONS + photonNum)
in the implementation, requiring the alloca-
tion of (NUM POSSIBLE BOUNCES * TO-
TAL NUM PHOTONS) slots in the photon map.
However, most of the photons will be absorbed by
a surface before NUM POSSIBLE BOUNCES
bounces, wasting space in GPU memory since
storage must be allocated to store photon-surface
intersections that ultimately do not happen.

In particular, the second shortcoming limits the num-
ber of possible bounces of each photon in this imple-
mentation due to the limited memory on many GPUs.
As a result, the ’naive’ algorithm’s capability to simu-
late soft indirect illumination is greatly weakened since
indirect illumination comes as a result of multiple pho-
ton bounces.

3. GPU Photon Mapping Adjustments

Fortunately, the GPU photon mapping implementa-
tion can be adjusted to overcome these shortcomings.
In particular, an implementation that takes advantage of
the atomic operations available on CUDA removes both
the wasted cycles and the wasted space present in the
naive implementation.

In the adjusted implementation, the incoming pho-
tons and outgoing photons are in separate arrays.
In the first step, the currentNumPhotonsInPhoton-
Map is initialized to 0 and photons are emitted from
the light source(s) as in the naive implementation.
Then, the process continues in a loop from 0 to
NUM POSSIBLE BOUNCES with for every currently
active photon in parallel:

1. Set currentNumberOutputPhotons to 0.

2. Calculate the photon-surface intersection for each
photon in the inputPhotons array.

3. Determine whether the photon reflects off the sur-
face using Russian Roulette.

4. If the photon reflects:

(a) Store the photon in the outputPhotons array
at index currentNumberOutputPhotons and
then increment the global value currentNum-
berOutputPhotons using the atomic opera-
tion.



(b) Store the location of the photon-surface inter-
section at index currentNumPhotonsInPho-
tonMap in the photonMap array and incre-
ment the global value currentNumPhotonsIn-
PhotonMap using the atomic operation.

5. Loop back to 1, swapping the inputPhotons and
outputPhotons arrays since the output photons of
the current bounce are the input photons of the next
bounce.

The first difference between this implementation and
the previous one is the presence of an output pho-
ton array in the kernel. For each ’bounce’, the array
contains currentNumberOutputPhotons in which every
slot in the array from 0 to currentNumberOutputPho-
tons is filled with a currently active photon; the pho-
tons absorbed in the current bounce are not there. It
is no longer necessary to allocate a thread for every
photon for NUM POSSIBLE BOUNCES bounces; the
programmer only needs to allocate threads for the pho-
tons that have not yet been absorbed.

The second implementation adjustment is that each
photon-surface intersection is now stored at index cur-
rentNumPhotonsInPhotonMap; currentNumPhotonsIn-
PhotonMap is a global value that is initialized at 0
and then incremented using the atomic operation with
each photon-surface reflection. This algorithm mod-
ification greatly reduces the space necessary to al-
locate for the photonMap array, particularly when
NUM POSSIBLE BOUNCES is set to a high value.

Unfortunately, the use of the atomic operations does
take away some of the ’parallelism’ of the implementa-
tion, and atomic operations are only available in nVidia
GPUs with compute capability 1.1 or higher[1].

4. Results

4.1. Scene

A simple scene consisting of an ’open box’ with two
lights is constructed. The coordinates of the box extend
from -.25 to .25 in the x, y, and z directions. The box is
open in one direction and is shown from multiple angles
in figure 1. Circular lights are present in the center of
two inner ’surfaces/walls’ of the box. The illumination
from the lights is uniform from all locations and in all
directions. Each surface/wall in the scene reflects 75%
of the photons that hit it, and each wall uses the Lam-
bertian reflectance model where the angle of the viewer
and the photon reflectance is insignificant.

4.2. Experiments

The experiments described were all performed on a
laptop with a Intel Core 2 Duo CPU running at 2.00
GHz and a nVidia 8600M GT GPU with two multipro-
cessors.

One issue present in GPU programming is limited
memory, especially in a mid-level GPU such as the
8600M. Due to memory limitations, it is not possible
to run the photon mapping implementations with much
more than 5000 photons.

First, we ran the naive implementation described in
2.3 using 5000 total photons. 2500 photons are emitted
from each light in the scene, and each photon is only
allowed two bounces in the scene due to shortcoming
2. The illumination of each surface is retrieved via the
use of a 64 X 64 mesh of points on the surface, where a
photon-surface intersection contributes to the point illu-
mination if it is within distance RAD = .05 of the point.
A photon power magnitude that is equivalent to 90 or
more photons within RAD of the point represents full
illumination, and the point illumination drops with a
linear pattern proportional to the drop in photon power
magnitude until the photon power hits 0 magnitude and
there is no illumination at the point. The results are
shown in figure 1. The lights are present in the ’bottom’
and ’left’ walls in the figure. The results appear to be
accurate in the sense that the lights illuminate the scene
in the expected manner. In particular, the area of the
walls that are directly lit are much brighter than the ar-
eas lit indirectly, but the entire scene is lit to some extent
due to the presence of indirect illumination. However, a
lot of noise is present, likely due to the limited number
of photons.

Figure 1. Photon mapping results.



Next, the modified implementation described in 2.3
is run. The modifications to the algorithm overcome
shortcoming 2 of the naive implementation (see 2.3), so
each photon is now allowed up to fifteen total bounces.
All the other parameters remain the same as in 4.2. The
results are similar to the previous results, but the ar-
eas more dependent on indirect illumination are better
lit since each photon is allowed more bounces to illu-
minate the scene. A comparison of the results of the
previous results allowing 2 bounces per photon and the
current results allowing 15 photon bounces is shown in
figure 2; the previous results are on the right and the
current results are on the left.

Figure 2. Photon mapping compar-
ison between naive implementation
allowing 2 bounces/photons (left) and
modified implementation allowing 15
bounces/photon (right).

4.3. Running Times

In order to test whether the use of the GPU could
potentially improve the efficiency of photon mapping,
both the naive and modified GPU implementations of
photon mapping are compared to a CPU implementa-
tion. The structure of the algorithm used in the CPU
implementation is the same as the ’modified’ GPU algo-
rithm described in 2.3. The implementations are bench-
marked on a laptop with a Intel Core 2 Duo CPU run-
ning at 2.00 GHz and a mid-level nVidia 8600M GT
GPU with two multiprocessors. The first pass, the cre-
ation of the photon map, is timed separate from the ren-
dering pass. Only two bounces per photon are allowed

during this benchmarking in order to have a fair com-
parison across all implementations.

First, we benchmark the time it takes to emit the pho-
tons and generate the photon map. It takes 1.7 ms using
the ’naive’ GPU implementation described in 2.3, 11
ms using the ’modified’ GPU implementation described
in 2.3, and 15 ms using the CPU implementation. It
is clear that the use of the atomic operations can slow
down the generation of the photon map, so there are
trade-offs between the different GPU implementations.

Next, the rendering pass is timed. The render-
ing pass in each implementation is performed at each
point in a 64 X 64 mesh on each surface/wall by step-
ping through every photon-surface intersection stored
in the photon map, incrementing the number of pho-
tons in the region if the intersection is on the given
wall and within radius RAD of the point, and then
dividing the total number of photons within RAD by
FULL LIGHT POWER NUM PHOTONS to retrieve
the illumination at the point. The process took 3000 ms
using the naive GPU implementation, 2000 ms using
the modified GPU implementation, and 8000 ms using
the CPU. The modified GPU implementation is faster
than the naive implementation because the points on the
photon map are all ’packed together’ from index 0 to the
last photon in the photon map with no wasted searches
on empty slots present in the naive implementation.

It is clear that the GPU implementation is faster
than the CPU implementation in both photon mapping
passes, showing the potential of the GPU to speed up
the photon mapping process.

4.4. Photon Mapping Using Phong Reflection

Each implementation thus far uses the Lambertian
reflectance model for each scene surface/wall; the re-
flection from incoming light on each surface is diffuse
and viewing direction is insignificant to the illumination
at each point. If a photon-surface intersection stored in
the photon map is within RAD of a given point, the ’il-
lumination power’ of the point increases by 1 regardless
of the angle of the photon reflection and the viewing di-
rection. However, not all surfaces in the real world work
this way; the viewing direction often matters in the il-
lumination of a scene. To investigate photon mapping
in these scenarios, the modified GPU implementation
in 2.3 is farther adjusted to work for the Phong model
of reflection. Using the Phong model, the power of re-
flection for each photon-surface intersection is equal to
the dot product of the normalized viewing direction and
the normalized photon reflection direction to the power
of the shininess of the surface/wall. This calculation is
performed during the generation of the photon map and



then stored; it is not necessary to store the reflectance
direction in the photon map.

Results of this implementation are shown in 3; each
surface in the left, middle, and right image have shini-
ness parameters of 2.0, .5, and .01, respectively.

Figure 3. Photon mapping using the
Phong model of reflectance with shini-
ness parameters 2.0, .5, and .01 from left
to right

4.5. Increasing number of Photons

Unfortunately, the limited storage available on the
GPU limits the number of photons that can be processed
at one time, since information about every photon must
be in memory, and storage must be allocated for each
photon-surface intersection. The limited quantity of
photons results in an illumination pattern with signifi-
cant noise, as shown in figures 1, 2, and 3.

To remedy this issue, an array of float values con-
taining the current photon power of each point on the
64 X 64 mesh of each wall is constructed and stored
on the GPU. Then, the photon mapping implementation
is performed in multiple ’rounds’. At the end of each
’round’, the current photon power at each point on each
surface/wall is updated using the current set of photons
in storage. Now, there is no limitation to the number of
photons used to illuminate the scene.

The experiments described in this section are per-
formed with 5000 photons emitted in each ’round’ and
with each photon allowed 15 bounces. A photon-
surface intersection contributes to the illumination of a
point on the surface if it is within distance RAD = .025
of the given point, and a point is considered fully illu-
minated if the total photon power at the point is at least
10 times the number of ’rounds’ of photon mapping.
The shininess parameter is set to 5.0 for each wall. The
results of the implementation are shown in figure 4 for
1, 5, 10, 25, 50, 100 rounds of photon mapping, where
the total number of photons in each experiment is equal
to 5000 photons/round * number of rounds. It is clear
that the amount of noise in the illumination decreases as
the number of photons increases. However, the running

time does increase with the number of photons, so there
is a trade-off. The total running time of the GPU imple-
mentation is shown for differing number of photons in
table 1.

Figure 4. Photon mapping using 1, 5, 10,
25, 50, and 100 rounds of photon map-
ping with 5000 photons in each round (ar-
ranged from top left to bottom right going
across then down).

4.6. Other Considerations

The scene used for the experiments described in this
paper is relatively simple. In more complex scenes with
more points, it may not be practical to store the current
illumination of every point on every surface in the GPU
or even in the RAM. It might be necessary to store the
entire photon map in the GPU or RAM or even in a file
in order to properly render the scene. In addition, it may
be desirable to structure the photon map as a KD-tree
or related structure for improved retrieval of the desired
photons for each point. Finally, using photon mapping
in combination with another technique such as ray trac-
ing for certain forms of illumination may give improve
results with little penalty in processing time.



Number Of Photons Total GPU time
5000 2130
25000 10670
50000 20850
125000 53280
250000 105640

Table 1. Time in ms of the entire photon
mapping implementation on the GPU with
differing numbers of photons.

5. Conclusions

The results in this paper are promising and show
there is potential to using the GPU and CUDA as a
way to decrease the running time of the photon mapping
algorithm; both CUDA implementations achieved the
same results more quickly than the corresponding CPU
implementation. While other considerations should be
taken into account when considering photon mapping as
the choice technique to retrieve and render scene illumi-
nation, a GPU implementation should be considered in
spite of possible challenges.

References

[1] NVIDIA Corporation: NVIDIA CUDA compute unified
device architecture programming guide. NVIDIA Cor-
poration, Jan 2007.

[2] H. W. Jensen. Global illumination using photon maps.
pages 21–30. Springer-Verlag, 1996.

[3] V. Podlozhnyuk. Parallel mersenne twister. June.
[4] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen,

and P. Hanrahan. Photon mapping on programmable
graphics hardware. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Courses, page 258, New York, NY, USA,
2005. ACM.

[5] S. Singh and P. Faloutsos. The photon pipeline revisited:
A hardware architecture to accelerate photon mapping.
Vis. Comput., 23(7):479–492, 2007.

[6] J. Steinhurst, G. Coombe, and A. Lastra. Reordering for
cache conscious photon mapping. In GI ’05: Proceed-
ings of Graphics Interface 2005, pages 97–104, School
of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada, 2005. Canadian Human-Computer
Communications Society.

[7] J. A. van Meel, A. Arnold, D. Frenkel, S. F. P. Zwart,
and R. G. Belleman. Harvesting graphics power for md
simulations. Molecular Simulation, 34:259, 2008.

[8] K. Zhou, H. Q., R. Wang, and G. B. Real-time kd-tree
construction on graphics hardware. In Microsoft Techni-
cal Report, 2008.


